Technical Section

Quantitative analysis of discrete 3D geometrical detail levels based on perceptual metric

Qing Zhu *, Junqiao Zhao, Zhiqiang Du, Yeting Zhang

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan 430079, China

A R T I C L E I N F O

Article history:
Received 30 October 2008
Received in revised form 12 October 2009
Accepted 15 October 2009

Keywords:
Levels of detail
Quantitative analysis
Perceptual metric
Human vision system

A B S T R A C T

Aiming at the fundamental issue of optimal design of discrete levels of detail (LOD) for the visualization of complicated 3D building facades, this paper presents a new quantitative analytical method of perceptible 3D details based on perceptual metric. First, the perceptual metric is defined as the quantitative indicator of the visual perceptibility of facade details at a given viewing distance. Then, according to the human vision system, an algorithm employing 2D discrete wavelet transform and contrast sensitivity function is developed to extract the value of perceptual metric from the rendered image of the facade. Finally, a perceptual metric function is defined, based on the perceptual metric values extracted at equal interval viewing distances. The minimum detail redundancy model is then proposed for the optimal design of discrete LODs. This method provides a quantitative instruction for generating discrete LODs. The experimental results prove the effectiveness and great potential of this method.

1. Introduction

Online virtual globe tools, led by Google Earth, are dramatically changing the way we interact with spatial data from 2D maps to the 3D Virtual Geographic Environments (VGEs) [1,2]. Up to now, 3D representations of geographic information in computers have been known as VGES, which are of increasing importance in urban areas and provide more accurate and flexible mathematical models, effective tools, and user interfaces for geospatial communication. Therefore, 3D models in VGES do not just have photorealistic appearances, but they are also accurate, with credible geometry and topology information of the built environment, achieved by making full use of advanced 3D measurement (such as imaging, LIDAR, GIS, and CAD) [3].

When representing a building, facades are often the most important elements, as they contain the exterior geometric details of the building. However, the number of polygons that represents the 3D geometry of complicated facades always exceeds the rendering capability of the hardware; a trade-off between complexity and performance is required. A preferred solution is the level of detail (LOD) technique, which increases the efficiency of rendering by reducing insignificant geometry for visualization [4]. One of the bottlenecks of this technology for complicated 3D facades is the automatic generation of discrete levels of detail (LODs). Given the target number of detail levels, a collection of LODs are produced based on manually assigned control factors, such as a target number of polygons with equal interval partitions, or exponential interval partitions, or employing trial and error based on plenty of pre-simplified models [5]. However, assigning various factors manually to generate LODs for the original model is usually not optimal. Inevitable detail redundancy between LODs brings about excessive rendering cost. This paper proposes an optimal design approach for discrete LODs of complicated 3D facades based on analyzing the perceptibility of facade details at various viewing distances, which prevents the costly pre-simplification stage and provides quantitative instructions for the construction and management of discrete LODs.

This paper is organized as follows. The related work on discrete LOD is reviewed in Section 2. Section 3 introduces the definition of the perceptual metric and perceptual metric function. Section 4 presents the algorithm based on the perceptual metric function for LOD optimization, and Section 5 discusses the experimental results. Finally, the conclusions are presented in Section 6.

2. Related work

Discrete LOD is a traditional approach of the LOD technique, first proposed by Clark in 1976 [6]. The most important advantages of this kind of LOD are its simplicity, high efficiency, and the support of offline preprocessing [4], which make it suitable for visualization of complicated 3D facades. The
generation of a collection of discrete LODs for such models comprises the following steps: first, determine the target number of detail levels; second, determine the proper control factor for each detail level, such as the number of polygons; and third, generate the LODs [3].

The proper target number of detail levels depends on various factors including the rendering capacity of the visualization system, the complexity of model, etc. As a result, it is hard to determine fully automatically. Moreover, the visualization system usually supports a fixed number of LODs, so the target number has to be selected manually.

Determining the control factor for each detail level is very important to the discrete LOD since models are often too complex to be simplified in real-time or for the simplification operations to be pre-recorded by progressive meshes [7]. As a result, most of the existing approaches for determining the detail level are based on pre-simplification processes. The original model is simplified to produce plenty of candidate LODs according to certain criteria, such as screen-space errors or object-space errors. Then proper LODs are selected by evaluating the errors of the candidates [4,8]. Although more sophisticated approaches based on the human vision system (HVS) have been proposed [9–11], it is too costly to simplify a complicated 3D facade into a number of candidates.

On the other hand, the target number of polygons and other control factors are also adopted to define each detail level, such as generating a collection of LODs based on pre-estimated runtime budgets [12], but it is hard to estimate the budgets accurately in an offline fashion.

To produce the LODs, various automatic or semi-automatic simplification algorithms have been comprehensively reviewed by David et al. and Cohen and Manocha [4,13].

In conclusion, there is still no good solution to the precise analysis and design of LODs for complex 3D models such as component-structured building façades, which hinders the practical use of discrete LOD. In the following sections, a new idea about the quantitative analysis of the perceptibility of geometric details is presented; such perceptual knowledge is extracted from the rendered images of a 3D facade, which is useful to guide the design of the LODs.

3. Perceptual metric and perceptual metric function

3.1. Definition of perceptual metric

The process of human visual perception of 3D models consists of two successive stages. First, based on given parameters, a virtual camera samples the 3D model. This is called the 3D projection. Its result is a rendered image on the screen in which primitives less than the pixel resolution of the display are invisible to the viewers. Second, visual perception of the rendered image is generated through the retina, visual pathways, and finally the visual cortex [14]. This stage is modeled by the human vision system (HVS). Details displayed on the screen that are beyond the capability of human visual perception are filtered out in this stage.

In order to quantify the visual perceptibility of the details in the 3D model, a perceptual metric (PM) is defined as

\[PM = \frac{VPs}{TPs} \]

where \(VPs \) is the number of pixels representing the perceptible details of the model in the rendered image and \(TPs \) is the number of pixels representing the total details of the model in the rendered image. These two numbers of pixels indicate the quantitative difference between the two stages of visual perception. The ratio between these two numbers, called PM, therefore indicates the perceptibility of geometric details. By means of PM, the geometric LODs of a 3D model can thus be quantitatively and intuitively analyzed.

3.2. Calculation of perceptual metric

In order to obtain a reliable and accurate PM, the two stages of perception should be quantified. Before rendering, a view frustum is defined as illustrated in Fig. 1 [15]. The 3D model is then projected onto the projection plane according to the perspective projection transformation. Placing the model in the center of the view frustum, the number of non-background pixels can be counted as the number of pixels that represent the object in the rendered image.

However, restricted by the viewing frustum, this evaluation is not accurate when the model is near to the camera because the clipping plane will eliminate that part of the model outside the view frustum. Therefore, \(d_1 \), where the model is shown maximally on the screen, is set as the beginning of the evaluation, as illustrated in Fig. 2.

The equation to calculate \(d_1 \) is as follows:

\[d_1 = \frac{R}{\sin(\theta/2)} \]

where \(R \) is the radius of the minimum bounding sphere of the model measured in meters and \(\theta \) is the field of view (FOV) of the virtual camera. The details of the visible surface of the model are considered to be entirely displayed at \(d_1 \). Then,

\[TPs = Pn_1 \]
where P_{n1} is the number of pixels that represent the object in the image rendered at the viewing distance d_1.

As shown in Fig. 3, after rendering the image of the 3D model, a HVS model is introduced to simulate the result of visual perception. Then the number of pixels represented the perceptible details in the rendered image can be calculated based on the result. In HVS, the contrast sensitive function (CSF) is one of the most important issues for the generation of vision because it concerns the decreasing sensitivity for higher spatial frequencies [16]. This property fits the CSF well for the LOD analysis because the imperceptible details on the surface of the model are usually small concave or convex shapes, which represent relatively high spatial frequencies in the rendered image. There are both luminance CSF and color CSF. However, color CSF has proved to be related to specific applications, and there is still no good definition of it [17]. Moreover, color contributes little to the identification of details [18]. As a result, luminance CSF is employed to construct the HVS filter.

The vision simulation procedure includes three key steps: 2D discrete wavelet transform (DWT) decomposition, HVS filtering, and 2D DWT reconstruction. To implement CSF precisely, the image has to be transformed from the spatial domain to the frequency domain. Among many existing transform approaches, the 2D DWT better fits the HVS model because the 2D DWT decomposition is similar to the multiple channel models of the HVS, which allows the processing to act on each spatial frequency channel independently [16]. It also retains the frequency as well as the spatial information of the signal, which supports the further extension of other perceptual effects such as masking. The Daubechies 9/7 bi-orthogonal wavelet was selected because of its fitness for image processing [19].

After the DWT composition, CSF is implemented to process the wavelet coefficients. As a more precise approach, the adaptive approach is adopted [20], which makes use of the finite impulse response (FIR) filter rather than employing simple weighting factors to implement CSF. Taking the observing distance from the human eyes to the screen and the screen resolution into account, the CSF is mapped as a modulation function to the corresponding frequency band in the down-sampled domain to construct the filters. Then the filters are employed to convolute with the wavelet coefficients.

Finally, the inverse DWT transform is carried out to reconstruct the filtered wavelet coefficients. The vision-simulated image is then generated, in which the imperceptible details are blurred and the perceptible details are retained. The number of pixels having different values between the rendered image and the vision-simulated image indicates the quantity of the imperceptible details. So VPs is calculated by

$$\text{VPs} = P_n - IP_n$$ (4)

where P_n is the number of pixels of the object in the rendered image and IP_n is the number of pixels showing different values between the rendered image and the corresponding vision-simulated image.

The PM is then computed as

$$\text{PM} = \left(\frac{P_n - IP_n}{P_n}\right) \times \frac{1}{d_1}$$ (5)

where d_1 is the viewing distance.
3.3. Perceptual metric function

Viewing distance is the most important parameter to the discrete LOD [21]. Therefore, the quantitative analysis of LODs should be based on exploring the relationship between viewing distance and the perceptibility of model details, which is defined by the perceptual metric function PM(d). A scheme in which d increases from near to far in order to render the model with equal
intervals is employed to obtain a series of PM values. The expression for \(PM(d) \) is then obtained by the least squares fitting of these values.

The domain of viewing distance is defined as \([d_1, d_f]\), where \(d_1\) has already been obtained by Eq. (2) and \(d_f\) is the furthest boundary of viewing distance when the model projected on the screen reaches the size of one pixel in the screen. When \(d\) is larger than \(d_f\), the model will not be displayed. Based on the perspective projection, the projection size of the model is calculated by the following equation, as illustrated in Fig. 4.

\[
R_{prj} = \left(\frac{R}{l} \right) R_{proj} = \frac{R}{C_1} R_{prj} = \frac{R}{0.0254} \sqrt{1 + \left(2r \cdot l/0.0254\right)^2}
\]

where \(R_{prj}\) is half of the length of the projected model in the projection plane and \(l\) is the distance from the projection plane to the camera center, all measured in meters. \(R_{pix}\), the number of pixels that represent the \(R_{prj}\) on the screen, is calculated by equation

\[
R_{pix} = R_{prj} / 0.0254
\]

where \(r\) is the resolution of the screen measured in dots per inch (dpi), 0.0254 is the conversion factor between meter and inch. When \(R_{pix}\) is equal to 0.5 pixels, the projected length of the model is equal to one pixel. The furthest boundary \(d_f\) is then calculated by

\[
d_f = R \sqrt{1 + \left(2r \cdot l/0.0254\right)^2}
\]

For a 3D model, the value of \(PM(d)\) decreases with the increase of viewing distance. The reasons are as follows. First, due to the perspective projection, the projection size of the model decreases when the model moves further away. Second, the spatial frequency of details in the model perceived by human eyes will grow higher when the model becomes smaller on the screen. Therefore, more details will be filtered out by HVS, which results in the decrease in the number of pixels that represent the perceptible detail.

4. Optimal design approach of LODs

Based on the perceptual metric function, the relationship between viewing distance and the perception of details is mathematically described. The LODs of the 3D model can thus be analyzed by this function. For visualization applications, optimized LODs should be output sensitive; thus the redundancy of details between detail levels in discrete LOD should be minimized.

The total quantity of details (TDs) of discrete LODs can be represented by a piecewise function of \(d\)

\[
TD(d) = \begin{cases}
TD_0, & d \in (0, d_1) \\
TD_1, & d \in [d_1, d_2) \\
\vdots & \vdots \\
TD_n-1, & d \in [d_{n-1}, d_n) \\
TD_n, & d \in [d_n, d_f]
\end{cases}
\]

where \(TD_i\) \([i \in \mathbb{Z}, i \in [0, n]]\) is the quantity of details in LOD \(d_i\), \([i \in \mathbb{Z}, i \in [1, n]]\) is the viewing distance for switching to LOD \(d_i\). As
discussed before, d_1 is the start point of viewing distance. Within $(0,d_1)$, part of the model occupies most of the screen, and is the dominating object for visual perception. The typical application under this circumstance is the observation of the details or the internal structure, which needs a model of the highest resolution. Also, since the render cost for displaying part of the model is not huge, it allows fast visualization. Therefore, the quantity of details of the original object is defined as TD_0.

After defining LOD_0, the remaining work is the defining of LOD_1 to LOD_n. In order to keep the continuity of perception, the quantity of details in LOD_i must constantly be more than the minimum needed for representing the same perceptibility as in the original model. As shown in Fig. 5, the red solid line represents the minimum quantity of details that exactly meets the minimum needs of perception, which is termed the optimal LOD. The horizontal black line represents TD_i. At a given viewing distance $d_i + \Delta d$, the difference between the quantity of details of discrete LOD and optimal LOD is the redundancy detail (RD), as shown in Fig. 5, which is calculated by equation

$$RD(d_i) = TD(d_i) - TD(d_i + \Delta d)$$

where $TD(d)$ is the quantity of the details of the optimal LOD at the viewing distance d, and $TD_0 = TD(d_1)$.

Based on the previous definition, perceptual metric can be employed as a ratio that indicates the proportion of the perceptible details in the total details of the object. The redundancy can thus be calculated by the product of TD_0 and $PM(d)$

$$RD(d) = TD_0 \cdot PM(d) - TD_0 \cdot PM(d+\Delta d)$$

The gray region in Fig. 5 illustrates the total detail redundancy, which can be calculated by the integral of RD over the distance domain

$$\int_{d_i}^{d_i+\Delta d} RD(d) \, dx = \sum_{i=1}^{n} \left(TD_0 \cdot PM(d_i) \cdot (d_{i+1} - d_i) - \int_{d_i}^{d_{i+1}} PM(x) \, dx \right)$$

Thereby, designing discrete LODs is equivalent to obtaining a set of viewing distances that minimizes the total RD. It is obvious that when the total redundancy is minimized, the discrete LODs will have the least data size while keeping the same visual fidelity as the optimal LOD. Therefore, the discrete LODs are optimally designed.

5. Experimental analysis

5.1. Experimental description

Because of the complex geometry, a complicated building model (the great shrine hall) in Chinese classical style composed of 4398 components and 196,037 triangles was selected as the test model. To reveal fully the details, the model was rendered with the flat shade mode using OpenGL. The scene adopted static light with a white background, and the FOV was 33.33 degrees.
The four facades of the building model, extracted manually from the whole model based on the orientation as illustrated in Fig. 6, were analyzed in the experiment in which Facade 3, the front facade, was selected to illustrate the detailed process.

The experiments were carried out using a 19 in TFT-LCD monitor with a resolution of 86.27 dpi (1280 × 1024) and a luminance of 200 (cd/m²). The observing distance from the observer’s eyes to the monitor was 0.5 m. This is a typical visual environment for desktop applications. The results are also suitable for a visual environment with monitors of lower resolution or observation at greater distances. For monitors of lower resolution, the quantity of the displayed details on the model will be reduced. For observation at a greater distance, on the other hand, the increasing spatial frequency perceived by human eyes will decrease the quantity of perceptible details. As a result, if a more conservative solution is needed, a higher resolution monitor and a closer observing distance should be chosen. For another commonly used display device, namely a projector, though its resolution is lower than the desktop monitor (from 5 to 30 dpi), the observing distances are usually greater (from 5 to 10 m). Therefore, the spatial frequency perceived by human eyes is similar to that of the desktop monitors.

5.2. Vision simulation

To construct the filters, the CSF is mapped to the frequency intervals. The maximum spatial frequency perceived by humans from the monitor was calculated to be 14.82 cycles/deg (cpd) by Eq. (13)

\[
f_{\text{max}} = 0.5f_s = 0.5(2\text{v} \tan(0.5 \pi))/0.0254
\]

where \(f_{\text{max}}\) is the maximum frequency, which is down-sampled from \(f_s\), the sampling frequency of the screen, at Nyquist rate of 0.5 cycles/pixels. The adopted CSF expression is widely used in many other works [4]

\[
A(z) = 2.6(0.0192 + 0.144z)\exp(-(0.144z)^{-1})
\]
Based on a similar approach to remove the influence of low-frequency dip of the CSF [20], the coefficients with the spatial frequency of less than 6.2 cpd, where the CSF reaches its maximum, were not filtered. This approach can also be employed to decide the proper level of DWT decomposition. When the maximum frequency of level \(i\) of the decomposition was below 6.2 cpd, \(i/C_0\) levels decomposition was adequate for CSF filtering. As a result, two levels of DWT decomposition were adopted in the experiment because the minimum spatial frequency, \(f_{\text{max}}/4\), in the second level of decomposition is smaller than 6.2 cpd.

Fig. 7 shows the results. It can be seen that most of the differences between the original image and the processed image either occur at sharp edges, which represent high spatial frequencies such as the silhouette of sharp components, or at gentle changes of pixel values, which represent low contrast such as tiles. In general, there was little visible loss occurring.

The visible difference predictor (VDP) [22] and structural similarity (SSIM) [23] were adopted to evaluate objectively the performance of the vision simulation. The original rendered image and the vision-simulated image were input and the indices are shown in Table 1. Fig. 8 shows the output maps. The results indicate that these two images are visually equivalent, which proves the validity of the vision simulation.

5.3. LODs design

The domain of viewing distance was computed using Eqs. (2) and (8); \(d_1\) was equal to 68.48 m and \(d_4\) was equal to 29,750 m. The sampling range of viewing distance was set to [68.48, 1068.48 m] because the projection size of the model decreases drastically at the start of the domain, and when the distance is greater than 1000 m, the projection of the test model hardly changes any more. The distance interval was set as 5 m to obtain sufficient samples for the curve fitting of \(PM(d)\), as illustrated in Fig. 9. Five levels of LOD were chosen as an example.

Fig. 10 (left) shows the statistical result of the number of non-background pixels in the rendered images. The PM values, calculated by (5) through the visual simulation process, are shown in Fig. 10 (right). (If there are no special notes, \(d_1\) was set as the start point of the \(x\)-axis in the subsequent descriptions.)

According to the shape of the sample data, an exponential function as shown in (15) was adopted to implement the least squares fitting of the PM values

\[
 f(x) = a \exp(bx) + c \exp(dx)
\]

(15)

The results were as follows: \(a=0.5588\), \(b=-0.09722\), \(c=0.1908\) and \(d=-0.02061\). The R-square was 0.9994 and the RMSE was 0.001761, which indicate the fitting is credible. The \(PM(d)\) curve is shown by the red line in Fig. 11.

Assuming the switch distance for LODi is \(d_i\), the total RD was then calculated as follows:

\[
 RD = TD_0 \cdot (PM(0) \cdot (d_2 - 0) - \int_0^{d_2} PM(x) dx + PM(d_2) \cdot (d_3 - d_2)) \\
 - \int_{d_2}^{d_3} PM(x) dx + PM(d_3) \cdot (d_4 - d_3) \\
 - \int_{d_3}^{d_4} PM(x) dx + PM(d_4) \cdot (29750 - d_4) - \int_{d_4}^{29750} PM(x) dx
\]

(16)

The simplex method was chosen to find the minimum of the above function and finally \(d_2\), \(d_3\), and \(d_4\) were obtained as 64.5, 251.8, and 896.3 m, respectively, as illustrated in Fig. 12. The output viewing distances of LODs for the four façades are shown in Table 2. The results show that the optimized LODs were not equally partitioned by viewing distance. The higher the detail
resolution, the shorter is the action range for the LOD model. The rendering cost could thus be reduced based on common sense.

5.4. Comparative study

Several groups of typical viewing distances with equal intervals as well as exponential intervals were used as contrasts, as shown in Table 3. The widely used simplification method QEM was selected to simplify the model according to the LOD design [24], in which the half edge collapse operation was adopted in order to keep the perpendicularity and parallelism features in the façades. For generating LODs that fit the observation at a given viewing distance, the screen space error size of one pixel was chosen to calculate the proper simplification threshold at the viewing distance. Therefore, the LODs that keep the approximate perceptibility could be generated. As illustrated in Fig. 4, if the viewing distance \(d \) is given, the vertex–vertex distance \(\Delta d \), which is the threshold for simplification, can then be conservatively calculated by

\[
\Delta d = \frac{0.0254d}{(2r - l)}
\]

Facade models were then simplified based on the calculated threshold at each viewing distance. Fig. 13 illustrates the rendered images of simplified Façade 3 based on our method. Table 4 shows the statistics of the number of triangles for each LOD model in different planes.
Fig. 14 shows the comparison of the results, which illustrates the allocation of triangles along the viewing distance. An approximate approach for estimating the rendering cost of LODs was adopted, in which the cost of a LOD model is represented by the production of its rendering cost and the active viewing distance range. So the total cost of a collection of LODs is calculated by the following equation:

\[
\text{Cost} = \sum_{i=0}^{n} (d_{i+1} - d_i)C_i
\]

where \(d_i\) is the switch viewing distance for LOD\(_i\) and \(C_i\) is the cost for LOD\(_i\), which is represented by the number of triangles. Then, the rendering cost of results was calculated and the results are shown in Table 5.

It is seen that the cost of our method is generally lower than other cases, except for the last one. On the one hand, when the model is under close observation, the complexity should be reduced quickly when model moves further away because the data size of LOD\(_0\) and LOD\(_1\) is often too large to be efficiently rendered. On the other hand, when the model is far from the...
camera, the complexity should be reduced more slowly because the current data size of LODs is smaller. The costs of Equal interval III and Exponential interval II are similar or even smaller than the cost of the proposed method. However, the switching between the first two LODs in these results was much slower than with our result, which would lead to a worse performance if the data size of the model was relatively large. In addition, the simple practice of QEM may also bring about errors for this evaluation. Following the principle of human perception, new approaches should be proposed in the future to simplify the model according to the generated difference map, as illustrated in Fig. 7.

Results of the simplified façades are shown in Figs. 15–18. The statistics of number of triangles, as well as the costs, are shown in Table 6.

6. Conclusions and remarks

Keeping in mind the difficulty of precise quantitative design of 3D geometric LODs, this paper presents an analytical concept of perceptual metric; related novel algorithms for PM extraction and LODs design are also introduced. According to this kind of quantitative analysis, the redundancy of perceptual detail between LODs could be minimized, which facilitates the automatic generation of discrete LOD models. The result has great potential to play an important role in guiding the simplification of discrete LOD models. At a given viewing distance, the geometries contributing to the imperceptible details in the rendered image can be located for further simplification. Similar approaches have been proposed recently [25,26]. Future research will focus on the PM-driven model simplification for discrete and continuous LOD model generation of complicated textured 3D building models.

Acknowledgements

Thanks are due to Professor Liqiu Meng, Professor Zhigen Pan, Professor Kun Zhou, Dr. Zhigao Yang and Dr. Dongbo Zhou for their helpful discussions during the research. Thanks to Dr. Rafal Mantiuk for his help with VDP. This work is supported by the National Basic Research Program of China (973 Program, No. 2010CB731800), the National Natural Science Foundation of China (40871212, 40721001 and 40701144) and the National High Technology Research and Development Program of China (2008AA121600).

References