文章编号:1671-8860(2014)10-1214-07

散乱点云数据精配准的粒子群优化算法

韩贤权^{1,2} 朱 庆^{1,3} 丁雨淋^{1,4} 周东波⁵

1 武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉,430079

2 长江科学院工程安全与灾害防治研究所,湖北 武汉,430010

3 西南交通大学地球科学与环境工程学院,四川 成都,610031

4 香港中文大学太空与地球信息科学研究所,中国香港,999077

5 华中师范大学国家数字化学习工程技术研究中心,湖北 武汉,430079

摘 要:作为点云数据处理的关键步骤,点云数据配准的结果直接影响后续数据处理的精度。基于人工标靶 和 ICP 思想的传统配准方法存在受环境影响、初始条件限制以及特征点提取困难等问题。针对传统地面激 光扫描点云数据的高精度配准方法主要依赖人工标靶和特征点选取等局限,提出了一种改进的粒子群优化 算法,以法向量叉积代数和最小作为适应度函数,对相邻点云重叠区域内的所有数据进行高效的全局搜索,在 选取最佳配准点的基础上实现了散乱点云的精确配准。通过对多站扫描的高陡边坡岩体点云数据进行整体 配准,并与 ICP 等经典算法进行对比实验,结果验证了本方法的可行性、有效性和稳定性,可以有效解决配准 过程中标靶或同名特征点不易寻找的问题。

关键词:散乱点云;法向量叉积;粒子群优化算法;配准 中图法分类号:P237.9 文献标志码:A

三维数据配准技术^[1,2] 是三维点云数据处理 的关键步骤,其配准结果直接影响后续数据处理 和三维测量的精度^[3]。配准的关键是寻找相关点 集的同名点,已有的方法大致可分为两类:①使用 人工标靶进行公共点转换,根据前后两个视角观 测的三个以上不共线的公共点进行配准;②无合 作目标的配准,以 ICP(iterative closest point)算 法^[4] 及其改进算法^[5-12]为代表。

当扫描对象较小且利于人工标靶观测时,方 法①可以减轻后期配准的工作量且精度较高,但 当扫描对象较为复杂时,外界环境的各种影响(如 扫描仪和标靶架设困难、激光与标靶之间有一定 入射角、标靶提取的误差较大等)都会降低此方法 的精度^[13]。特别是在大范围作业时(大型建筑物 或远距离野外场景),除了测站增加带来的扫描过 程繁杂以外,一旦扫描现场的条件较为恶劣,扫描 仪和人工标靶的布设将很难满足配准的要求。

方法②以 ICP 算法为代表,它不需要野外设 立人工标靶,在一些无法设置人工标靶的测量场 合应用广泛,一般适用于精度要求较高的扫描任 务以及存在明确对应关系的点集之间的配准,但 它对点云之间的相对初始位置要求较高,在点云 初始位置相差过大的情况下,往往无法确定其收 敛方向^[14]。此外,ICP 的改进算法^[5-12]大多依靠 从点云数据中提取的特征点^[15]或轮廓曲线^[16]等 人为引入特征标签^[17],普遍存在鲁棒性不够稳 定^[10]、速度较慢^[6]等问题,其中基于曲面模型的 改进方法在曲面逼近时需要进行点云分割与曲面 模型辨识,不能适应点云的任意拓扑外形^[18];基 于主成分分析变换的方法以数据的统计信息为基 础进行主成分分析变换,要求空间数据具有较大 的相似性,对于对称目标可能会出现混淆的情况, 需要在数据变换后进一步判断^[19]。

针对以上问题,如何在不需要准确选择特征 点的条件下,对任意形状目标的点云数据实现快 速精确的配准是当前三维激光扫描技术应用中亟 待解决的一个难题。粒子群优化算法^[20](particle swarm optimization,PSO)是一种基于群体智能

收稿日期:2013-12-19

第一作者:韩贤权,博士生,工程师。主要从事空间数据处理与虚拟地理环境研究。E-mail: hanxq@mail.crsri.cn 通讯作者:丁雨淋,博士生。E-mail: rainforests@126.com

项目来源:国家自然科学基金资助项目(41301434,41201413,51209019);中央级公益性科研院所基本科研资助项目(CKSF2013022/ GC);精密工程与工业测量国家测绘地理信息局重点实验室开放基金资助项目(PF2013-5)。

方案的演化计算技术,其凭借简单、快速、精度高、 所需调整参数少等优点,成为解决优化组合问题 最有效的工具之一,它适用于求解大量非线性、不 可微和多峰值的复杂优化问题^[21]。由于 PSO 算 法概念简单、易于实现、收敛速度较快,因而得到 快速发展,并在自动目标检测、多目标优化、医学 图像处理等领域得到广泛应用[22-24],但在点云数 据配准领域还应用较少。与经典的 ICP 系列算 法每次迭代都进行坐标变换不同, PSO 算法只在 迭代结束后进行一次坐标转换,转换参数的计算 量和计算时间明显减少,算法的复杂程度明显降 低。同时,ICP 算法是局部最优算法,一旦扫描对 象缺少特征信息或特征点选择有误,配准精度将 会降低, 而 PSO 算法则针对全部数据进行计算, 且不依赖于数据的几何特征,避免了选取特征点 造成的误差。此外,如果同名区域的数据存在噪 声,ICP 算法会出现假局部最优状态,导致结果精 度下降,而 PSO 算法是针对整体数据而言的迭代 优化算法,数据的噪声对于整体配准影响较小。 因此,本文将点云的法向量叉积代数和最小定义 为粒子群算法的适应度函数,通过对重叠区域的 全部数据进行搜索,以期实现简洁、快速、高精度 的点云配准,达到全局最优的效果。

基于粒子群优化算法的散乱点云 数据精配准

本文方法的基本思路是以点云数据法向量叉 积绝对值代数和最小为准则对 PSO 算法的优化 函数进行改进,针对散乱点云数据进行全局搜索。 搜索的过程分为两步,第一步步长大,搜索较快; 第二步步长小,搜索精度较高。通过以上搜索过 程找到点云间的最佳配准位置,达到全局最优。

1.1 粒子群算法

粒子群算法的基本思想是将每个个体看作是 在 n 维搜索空间中的一个没有重量和体积的粒 子,用一个矢量表示,所有的粒子都有一个适应度 (fitness value),由被优化的函数决定。每个粒子 在搜索空间中都以一定的速度飞行,这个速度决 定它飞翔的方向和距离,也用一个矢量来表示。 粒子们知道自己的当前位置和到目前为止发现的 最好位置(particle best,记为 p_{best}),这个可以视 作粒子本身的飞行经验。同时,每个粒子还知道 到目前为止整个群体中所有粒子发现的最好位置 (global best,记为 g_{best} , g_{best} 是 p_{best} 中的最好值], 这个可以视作粒子同伴的飞行经验。粒子根据自 身的飞行经验以及同伴的最好飞行经验对自己的 飞行速度进行动态调整,即每个粒子通过统计迭 代过程中自身的最优值和群体的最优值来不断地 修正自己的速度大小和前进方向,从而形成群体 寻优的正反馈机制,它依据每个粒子对待优化函 数的适应度将个体逐步地移到较优的区域,并最 终搜索、寻找到问题的最优解。

粒子更新的速度 *V* 和位置 *X* 的数学描述如下:

$$\begin{cases} v_i(t+1) = v_i(t) + c_1 r_1(t) (p_{\text{best}_i} - x_i(t)) + \\ c_2 r_{2j}(t) (g_{\text{best}} - x_i(t)) \\ x_i(t+1) = x_i(t) + v_i(t+1) \end{cases}$$
(1)

其中,*c*₁、*c*₂为非负的学习参数;*r*₁、*r*₂为介于(0,1) 的随机数,用来保持群体的多样性;*p*_{best},是第*i*个 粒子搜索到的局部最好位置;*g*_{best}是整个粒子群 迄今为止搜索到的最好位置,通过不断更新粒子 的位置,即可找到全局最优时的粒子位置。

1.2 散乱点云数据的配准准则

由于点云数据是离散数据,在不同测站扫描 的相同区域较难包含完全对应的点,所以点云数 据的配准即是寻找同区域点云数据最佳的对应位 置,因此需要在配准过程中给出一个准则来判断 这个最佳的对应位置。

在点云数据的获取过程中,得到的不仅有点 云的坐标数据,还有点云数据的法向量信息,相对 于坐标信息,法向量信息更好地反映了点云数据 的空间特征。在完全配准的情况下,对于同一个 扫描点,其法向量在不同测站中理论上应相互平 行。

由解析几何知识可知,平行的法向量其叉积 为零:

$$\vec{a} \times \vec{b} = \vec{0} \tag{2}$$

即[$y_1z_2 - z_1y_2, z_1x_2 - x_1z_2, x_1y_2 - y_1x_2$]=[0,0, 0],其中 $\vec{a}(x_1, y_1, z_1), \vec{b}(x_2, y_2, z_2)$ 分别为两个法 向量。

在点云配准的过程中,如果两组点云数据达 到理论的准确匹配,其所有点云的法向量都应相 互平行,即对不同测站的点云数据,法向量的叉积 绝对值代数和应该为 0,但是由于仪器以及环境 等因素的影响,存在测量误差,所以实际配准时法 向量的叉积绝对值代数和只可能相对最小,如式 (3)所示。

$$f(P_i) = \min \sum_{i} |y_{i1}z_{i2} - z_{i1}y_{i2}| + |z_{i1}x_{i2} - x_{i1}z_{i2}| + |x_{i1}y_{i2} - y_{i1}x_{i2}|$$
(3)

式中, P_i 表示点云配准过程中的某一位置。

由于配准过程中应用了所有点云的法向量数 据,不是利用重叠区域的个别特征点进行计算,所 以配准结果可达到整体最优。相比传统的配准方 法,法向量叉积的计算比较简单,速度较快,精度 高。

1.3 粒子群优化算法及其改进

数据配准的关键是计算出两站之间的转换参数(包括平移参数、旋转参数和缩放参数),对于整体配准而言,在给定了配准准则的前提下,需要一个稳健可靠的搜索算法进行最优参数的搜索。

设 $P_i = (P_{i1}, P_{i2}, \dots, P_{in})$ 为粒子 V_i 所经历的 最好位置,也就是粒子 i 所经历过的具有最好适 应值的位置,称为个体最好位置。根据式(3),设 $f(P_i(t))$ 为法向量叉积代数和最小化的适应度函 数,则粒子 i 的当前最好位置由式(4)确定:

 $P_{i}(t+1) = \begin{cases} P_{i}(t), f(P_{i}(t+1)) \ge f(P_{i}(t)) \\ P_{i}(t+1), f(P_{i}(t+1)) < f(P_{i}(t)) \end{cases}$ (4)

对于法向量叉积代数和最小化问题,适应度 函数值越小,对应的位置越好。当适应度函数 $f(P_i(t))$ 在当前位置的值大于等于上一位置的值 时,表明上一位置的法向量叉积代数和较小,则上 一位置为最佳位置;反之,当适应度函数 $f(P_i(t))$ 在当前位置的值小于上一位置的值时,表明 当前位置的法向量叉积代数和较小,则认为当前 位置为最佳位置。设群体中的粒子数为 S,群体 中所有粒子所经历过的最好位置为 $P_g(t)$,称为 全局最好位置,则

$$P_{g}(t) \in \{P_{0}(t), P_{1}(t), \cdots, P_{s}(t) \mid f(P_{g}(t)) = \min\{f(P_{0}(t), P_{1}(t), \cdots, P_{s}(t))\}$$
(5)

且式⁽¹⁾变为:

 $\begin{cases} v_{ij}(t+1) = v_{ij}(t) + c_1 r_{1j}(t) (P_{ij}(t) - x_{ij}(t)) + c_2 r_{2j}(t) (P_{gi}(t) - x_{ij}(t)) \end{cases}$ (6)

 $x_{ij}(t+1) = x_{ij}(t) + v_{ij}(t+1)$

其中,下标 j 表示粒子的第 j 维;i 表示粒子序号; t 表示进化过程中的第 t 代; c_1 、 c_2 为加速度常数, c_1 是调节粒子飞向自身最好位置的步长, c_2 是调 节粒子飞向全局最好位置的步长,通常在 $0\sim2$ 间 取值; r_1 , $r_2 \in U(0,1)$ 为两个相互独立的随机函 数; $P_{ij}(t)$ 是第 i 个粒子搜索到的局部最优位置; $P_{si}(t)$ 是整个粒子群迄今为止搜索到的最优位 置。通过不断更新粒子的位置,即可找到法向量 叉积代数和最小时的粒子位置。

本文将法向量叉积代数和最小作为适应度函

数的粒子群算法用于点云数据的配准,以此搜索 最佳配准变换参数,流程如图1所示。描述如下:

图 1 配准算法流程图

Fig. 1 Workflow of the Registration

1)确定粒子的个数、维数以及参数空间的范 围;

2) 在搜索空间内随机产生粒子群的初始位 置和速度,初始化每个粒子的局部最优位置 P_{ij} (t)以及全局最优位置 $P_{gi}(t)$;

3) 根据式(3),对于每一个粒子,计算其适应 度函数,如果当前的最好位置优于历史最优值,则 更新历史最优值 $P_{ij}(t)$,依次计算并更新全局最 优值 $P_{si}(t)$;

4) 根据式(6)更新粒子的位置和速度;

5)判断是否满足终止条件,若满足,则输出
 全局最优解 P_{gi}(t),否则转到步骤 3),继续进行
 迭代;

6)利用 P_{si}(t),即最优变换参数对点云数据 进行计算,得到最终的配准点云。

其中,搜索算法迭代终止条件是最大迭代次 数和本次搜索结果与上一次搜索结果的差值,当 迭代次数超过最大迭代次数,或者本次搜索结果 与上一次搜索结果的差值小于阈值时,就结束迭 代,这两个迭代条件与点云数据的密度、精度以及 搜索步长有关,不同条件下的阈值不尽相同。在 配准过程中,首先根据初始位置设置平移、旋转、 缩放参数的搜索范围和搜索步长,然后进行搜索, 当搜索停止时,用最后的搜索参数对点云数据进 行坐标转换。

实验与分析 2

为验证本文配准算法的可行性和有效性,选 取某水利工程中的一个高陡边坡进行扫描数据配 准实验。首先从多个不同视角获得了扫描对象的 点云数据,以其中四站数据为例,利用本文方法进 行散乱点云的精配准。

2.1 实验设计

实验对象为新鲜开挖的山体,马道狭窄陡峭, 操作空间较小,不利于采用设置人工标靶的方法 进行数据采集和配准,同时出于施工进度要求和 现场安全的考虑,需要快速完成数据采集工作,因 而也不适合采用传统的精扫人工标靶的方法来进 行点云数据的采集和配准。

实验以其中的四站数据为例进行配准,如 图 2及图 3 所示。图 2(a) 包含 381 640 个数据 点;图 2(b)包含 237 160 个数据点;图 2(c)包含 341 771 个数据点;图 2(d)包含 331 380 个数据 点,每两站之间的重叠区域包含约13~14万个数 据点。

(c)第3站视角

图 2 不同视角扫描站点数据

Fig. 2 Data of Different Perspectives

图 3 点云重叠区域 Fig. 3 Point Clouds in the Overlap Region

实验采用 MATLAB2010, 实验环境为 CPU2.9G,内存3.0G。点云数据是三维数据, 在配准中选择 7 个参数,即三个平移参数(x,y、 z)、三个旋转参数(α 、 β 、 γ)和缩放参数 μ 。由于架 站时相邻测站的条件相似,所以两站之间的平移 参数、旋转参数和缩放参数相差不大,在设置参数 搜索范围时,将平移参数的搜索范围设置为[-1] m, 1 m]、旋转参数的搜索范围设置为[-10° , 10°7,缩放参数设为1,搜索步长分别设置为3 cm 和0.20°。

为了提高配准的精度,在第一次搜索结果的 基础上,进一步缩小搜索范围和搜索步长,平移参 数和旋转参数的搜索范围分别设置为[-7 cm, 7]cm] π [-0.5°, 0.5°], 缩放参数的搜索范围设为 [0.95,1.05],搜索步长设为 0.01 cm 和 0.01°。 四站实验数据共进行了三次两两配准,以第一站 数据的绝对坐标为基准进行搜索配准,结果如表 1所示。配准后得到的效果如图 4 所示,虽然每 站的数据量较大,但采用本文方法依然可以得到 较好的效果。

表1 配准搜索结果

Tab. 1 Results of the Registration

	第	一次搜	索	第二次搜索			
测站	叉积代数	迭代	时间	叉积代数	迭代	时间	
	和最小值	次数	/ s	和最小值	次数	/ s	
第二站	82.36	13	63.55	45.17	9	56.62	
第三站	125.44	15	78.21	93.63	7	53.94	
第四站	128.73	11	80.42	95.61	10	71.35	

(a)配准后的点云

图 4 配准后的点云

Fig. 4 Point Clouds After the Registration

2.2 实验结果分析

为了验证配准结果的绝对精度,实验中选取 具有明显特征的点作为检验点,用全站仪(徕卡 $TM_{30}, 0.5''; 1 mm + 1 \times 10^{-6}$)测量这些检验点的 三维坐标,与配准后的坐标值比较,以此评定本文 配准方法的绝对精度。表2是配准后的绝对精度 分析。

从误差分析的结果来看,检测点的各方向中 误差分别为 $\delta_x = 0.008 \text{ m}, \delta_y = 0.007 \text{ m}, \delta_z =$ 0.004 m,检测点的点位中误差为 0.011 m,完全 符合野外恶劣条件下大型场景的配准精度要求。 由于配准中用到了所有重叠区域的数据,克服了 表 2 配准结果绝对精度分析

Tab. 2 Absolute Accuracy Analysis of the Registration Results

编号-	配准后坐标			测量坐标			配准误差		
	X/m	Y/m	Z/m	X/m	Y/m	Z/m	X/m	Y/m	Z/m
1	485 871.835	2 807 209.585	421.226	485 871.826	2 807 209.579	421.228	0.009	0.006	-0.002
2	486 005.581	2 807 163.721	405.929	486 005.571	2 807 163.712	405.927	0.010	0.009	0.002
3	486 186.651	2 807 071.738	437.071	486 186.658	2 807 071.731	437.076	-0.007	0.007	-0.005
4	486 722.722	2 806 600.788	382.887	486 722.727	2 806 600.782	382.886	-0.005	0.006	0.001
5	486 297.205	2 806 887.202	469.800	486 297.213	2 806 887.211	469.794	-0.008	-0.009	0.006
6	486 470.569	2 806 716.362	478.827	486 470.561	2 806 716.368	478.822	0.008	-0.006	0.005
7	485 906.956	2 806 906.108	738.598	485 906.965	2 806 906.101	738.600	-0.009	0.007	-0.002
8	486 376.216	2 806 726.025	477.699	486 376.207	2 806 726.029	477.706	0.009	-0.004	-0.007
9	485 967.125	2 807 084.801	502.501	485 967.12	2 807 084.809	502.497	0.005	-0.008	0.004
10	486 421.890	2 806 699.775	520.574	486 421.899	2 806 699.768	520.572	-0.009	0.007	0.002

注:各方向误差: $\delta_x = 0.008 \text{ m}, \delta_y = 0.007 \text{ m}, \delta_z = 0.004 \text{ m};$ 配准总误差 $\delta = (\delta_x^2 + \delta_y^2 + \delta_z^2)^{1/2} = 0.011 \text{ m}.$

特征点配准方法选点不准确带来的误差影响,配 准的可靠性和配准精度均得到了较大的提高,同 时省略了特征提取的步骤,加快了配准的速度。

同时为了验证本文算法的可行性和有效性, 选取边坡上的重叠区域,分别采用三种方法对点 云数据进行配准实验,即 ICP 算法、改进的 PSO 算法、以 PSO 结果为初值的 ICP 算法。另外,将 实验数据分为三组,第一组点云数据没有噪声影 响,ICP 特征点选择比较准确;第二组点云数据 中,ICP 算法的特征点选取有 1 个点不准确;第三 组点云数据中部分存在噪声,数据位置不准确。 实验结果如表 3 和表 4 所示。

表 3 PSO 算法与 ICP 算法对比分析

Tab. 3 Analysis of PSO and ICP

	改进的 PSO 算法			ICP 算法			
数据	中误差	时间	迭代	中误差	时间	迭代	
	/m	/s	次数	$/\mathrm{m}$	/s	次数	
第一组	0.010	5	9	0.011	18	5	
第二组	0.009	6	11	0.082	32	9	
第三组	0.012	5	10	0.143	28	8	

从表 3 可以看出,在点云数据没有噪声、选择 特征点准确的情况下,ICP 算法与 PSO 算法配准 的精度相当,但 ICP 算法的时间复杂度较高,同 时需做大量的准备工作;而在特征点选择不准确 和点云有噪声的情况下,PSO 算法的配准效率明 显高于 ICP 算法。由于 ICP 算法需要相对准确 的初值才能得到较好的结果,故以 PSO 处理的结 果为初值,在此基础上改进 ICP 算法进行配准实 验,与改进的 PSO 算法进行对比分析。

从表 4 可以看出,针对不同类型的数据,改 进的 PSO 算法较为稳定,特征点选择的误差和噪 声对配准结果的影响较小,而以 PSO 结果为初值 的 ICP 改进算法虽然初值较好,但受特征点选择 和噪声的影响较大。 表 4 PSO 算法与改进的 ICP 改进算法对比分析

Tab. 4 Analysis of PSO and Improved ICP

	改进	的 PSO	算法	基于 PSO 的 ICP 改进算法			
数据	中误差	时间	迭代	中误差	时间	迭代	
	$/\mathrm{m}$	/s	次数	$/\mathrm{m}$	/s	次数	
第一组	0.010	5	9	0.09	13	4	
第二组	0.009	6	11	0.057	17	5	
第三组	0.012	5	10	0.106	18	5	

综合以上实验,ICP 算法和以 PSO 结果为初 值的 ICP 改进算法在没有噪声影响且初值选取 较好的情况下精度尚可,但当数据初值不好或有 噪声影响时,其精度和效率都不如改进后的 PSO 算法。由此可见,改进后的 PSO 算法无论使用何 种数据都具有较好的稳定性和高效性,而对 ICP 算法而言,并不是初值越好,配准的效果就越好, 它还受噪声等其他因素的影响。

3 结 语

针对点云数据配准操作中存在的实际问题, 本文提出了以点云数据法向量叉积代数和最小作 为适应度函数的粒子群改进算法,并与 ICP 等经 典算法进行了对比实验,结果验证了本文方法的 可行性、有效性和稳定性,可以有效解决配准过程 中同名特征点不易寻找的问题,同时适用于各种 环境条件下的配准工作,实现了点云数据的高精 度、快速配准,减少了实际工作的野外工作量和人 为操作的影响,对于工程实践具有较强的适用性。

配准算法的速度主要取决于搜索范围和搜索 步长的设定,目前本文实验部分采用了人工设置 搜索范围和步长的方式进行配准,如何实现自动 确定搜索范围和步长,实现全自动配准是下一步 需要重点研究的方向。

参考文献

- [1] Boulaassal H, Landes T, Grussenmeyer P, et al. Automatic Segmentation of Building Facades Using Terrestrial Laser Data[C]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Espoo, Finland, 2007: 65-70
- [2] Zhang Jianqing, Zhai Ruifang, Zheng Shunyi. Automatic Seamless Registration of 3D Multiple Range Views[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 100-103(张剑清,翟瑞芳,郑顺义.激光扫描多三维视图的全自动无缝镶嵌[J]. 武汉大学学报・信息科学版,2007, 32(2): 100-103)
- [3] Zheng Li, Zhang Jiangqing, Luo Yuejun. Close Multi-view Metrical Data Registration[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 199-202(郑莉,张剑清,罗跃军. 多视 结构光点云的自动无缝拼接[J]. 武汉大学学报:信 息科学版,2009,34(2):199-202)
- [4] Besl P J, McKay N D. A Method for Registration of 3D Shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (2): 239-256
- [5] Li Q, Griffiths J G. Iterative Closest Geometric Objects Registration [J]. Computers & Mathematics with Applications, 2000, 40(10): 1 171-1 188
- [6] Chen Y, Medioni G. Object Modelling by Registration of Multiple Range Images[J]. Image and Vision Computing, 1992, 10(3):145-155
- [7] Bergevin R, Soucy M, Gagnon H, et al. Towards a General Multi-view Registration Technique [J].
 Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1996,18(5): 540-547
- [8] Johnson A E, Bing K S. Registration and Integration of Textured 3D Data[J]. Image and Vision Computing, 1999, 17(2): 135-147
- [9] Park S Y, Subbarao M. An Accurate and Fast Point-to-Plane Registration Technique[J]. Pattern Recognition Letters, 2003, 24(16): 2 967-2 976
- [10] Wang Xin, Zhang Mingming, Yu Xiao, et al. Point Cloud Registration Based on Improved Iterative Closest Point Method[J]. Optics and Precision Engineering, 2012, 20(9): 2 068-2 077(王欣,张明明, 于晓,等. 应用改进迭代最近点方法的点云数据配 准[J]. 光学精密工程,2012,20(9):2 068-2 077)
- [11] Liu Y, Pottmann H, Wang W. Constrained 3D Shape Reconstruction Using a Combination of Surface Fitting and Registration[J]. Computer-Aided Design, 2006, 38(6): 572-583

- [12] Huang Y, Qian X, Chen S. Multi-sensor Calibration Through Iterative Registration and Fusion[J]. *Computer-Aided Design*, 2009, 41(4): 240-255
- [13] Cheng Xiaojun, Shi Guigang, Wang Feng, et al. Research on Point Cloud Registration Error Propagation[J]. Journal of Tongji University (Natural Science), 2009(12):1 668-1 672 (程效军,施贵刚, 王峰,等.点云配准误差传播规律的研究[J].同济大 学学报:自然科学版, 2009 (12): 1 668-1 672)
- [14] Zhu Yanjuan, Zhou Laishui, Zhang Liyan. Registration of Scattered Cloud Data[J]. Computer-Aided Design & Computer Graphics, 2006, 18(4): 475-481 (朱延娟,周来水,张丽艳. 散乱点云数据配 准算法[J]. 计算机辅助设计与图形学学报,2006, 18(4): 475-481)
- [15] Fan K C, Tsai T H. Optimal Shape Error Analysis of the Matching Image for a Free-form Surface[J]. *Robotics and Computer-Integrated Manufacturing*, 2001, 17(3): 215-222
- [16] Yang R, Allen P K. Registering, Integrating, and Building CAD Models from Range Data[C]. Robotics and Automation, 1998 IEEE International Conference on, Leuven, Belgium, 1998
- [17] Luo Xianbo, Zhong Yuexian, Li Renju. Data Registration in 3-D Scanning Systems[J]. Journal of Ts-inghua University (Science and Technology), 2004, 44(8): 1 104-1 106(罗先波,钟约先,李仁举.
 三维扫描系统中的数据配准技术[J]. 清华大学学报:自然科学版,2004,44(8): 1 104-1 106)
- [18] Ren Tongqun, Zhao Yuehan, Gong Chunzhong, et al. Unconstrained Registration of 3-D Scattered Point Clouds for Free-form Shape Measurement[J]. Optics and Precision Engineering, 2013, 21(5): 1 234-1 243 (任同群,赵悦含,龚春忠,等. 自由曲面 测量的三维散乱点云无约束配准[J]. 光学精密工程, 2013,21(5):1 234-1 243)
- [19] Inamdar S, Finger N, Singh S, et al. Dissolved Organic Matter (DOM) Concentration and Quality in a Forested Mid-Atlanticwatershed, USA[J]. Biogeochemistry, 2012,108(1/3):55-76
- [20] Kennedy J, Eberhart R. Particle Swarm Optimization[C]. Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, 1995
- [21] Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]. The 6xth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995
- [22] Zhang Libiao, Zhou Chunguang, Ma Ming, et al. Solutions of Multi-objective Optimization Problems Based on Particle Swarm Optimization[J]. Computer Research and Development, 2004, 41(7):1 286-

1 291(张利彪,周春光,马铭,等.基于粒子群算法求 解多目标优化问题[J].计算机研究与发展,2004,41 (7):1 286-1 291)

- [23] Eberhart R C, Shi Y. Guest Editorial Special Issue on Particle Swarm Optimization [J]. Evolutionary Computation, IEEE Transactions on, 2004, 8(3): 201-203
- [24] Feng Lin, Zhang Mingju, He Mingfeng, et al.

Multimodality Rigid Medical Image Registration Through Improved Particle Swarm Optimization [J]. Computer-Aided Design & Computer Graphics, 2004, 16(9): 1 269-1 274(冯林,张名举,贺明 峰,等. 用改进的粒子群算法实现多模态刚性医学 图像的配准[J]. 计算机辅助设计与图形学学报, 2004,16(9): 1 269-1 274)

Precise Registration of Scattered Cloud Data Based on the Particle Swarm Optimization

HAN Xianquan^{1,2} ZHU Qing^{1,3} DING Yulin^{1,4} ZHOU Dongbo⁵

1 State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing,

Wuhan University, Wuhan 430079, China

Engineering Safety and Disaster Prevention Department, Yangtze River Scientific Research Institute, Wuhan 430010, China
 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China

4 Institute of Space and Earth Information Science, the Chinese University of Hong Kong, Hong Kong 999077, China

5 National Engineering Research Center for E-Learning Science Hall, Huazhong Normal University, Wuhan 430079, China

Abstract: As one of the core steps in point cloud data processing, the registration result has great influences on the subsequent data operations. Traditional precise registration methods mainly depend on artificial targets and feature points. These methods are limited by the external environment, initial conditions, feature points are not easy to find and so on. To overcome the limitation, this paper proposes an improved Particle Swarm optimization (PSO) algorithm. Using the sum of normal vectors' cross products to define the fitness function, the current algorithm applies an efficient "Universal Search" and implements scattered cloud data registration based on the best registration points. By the experiment with the cloud data received by a multi-station scanning of a high steep slope rock and comparing the result with the classical algorithms such as ICP, the improved PSO algorithm is proved to be feasible, efficient and stable. It can effectively solve the problem of the targets or the feature points are not easy to find in registration process.

Key words: scattered cloud data; cross products of normal vector; PSO; registration

First author: HAN Xianquan, PhD candidate, engineer, specializes in the spatial data processing and virtual geographic environment. E-mail: hanxq@mail.crsri.cn

Corresponding author: DING Yulin, PhD candidate. E-mail: rainforests@126.com

Foundation support: The National Natural Science Foundation of China, Nos. 41301434, 41201413,51209019; Open Foundation of Basic Scientific Research Operating Expenses of Central-Level Public Academies and Institutes, No. CKSF2013022/GC; Open Foundation of Key Laboratory of Precise Engineering and Industry Surveying of National Administration of Surveying, Mapping and Geoinformation, No. PF2013-5.