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Abstract

Integration of aerial and ground images has been proved as an efficient approach to enhance
the surface reconstruction in urban environments. However, as the first step, the feature point
matching between aerial and ground images is remarkably difficult, due to the large differences in
viewpoint and illumination conditions. Previous studies based on geometry-aware image rectifi-
cation have alleviated this problem, but the performance and convenience of this strategy are still
limited by several flaws, e.g. quadratic image pairs, segregated extraction of descriptors and oc-
clusions. To address these problems, we propose a novel approach: leveraging photogrammetric
mesh models for aerial-ground image matching. The methods have linear time complexity with
regard to the number of images. It explicitly handles low overlap using multi-view images. The
proposed methods can be directly injected into off-the-shelf structure-from-motion (SFM) and
multi-view stereo (MVS) solutions. First, aerial and ground images are reconstructed separately
and initially co-registered through weak georeferencing data. Second, aerial models are rendered
to the initial ground views, in which color, depth and normal images are obtained. Then, feature
matching between synthesized and ground images are conducted through descriptor searching
and geometry-constrained outlier removal. Finally, oriented 3D patches are formulated using the
synthesized depth and normal images and the correspondences are propagated to the aerial views
through patch-based matching. Experimental evaluations using five datasets reveal satisfactory
performance of the proposed methods in aerial-ground image matching, which succeeds in all of
the ten challenging pairs compared to only three for the second best. In addition, incorporation
of existing SFM and MVS solutions enables more complete reconstruction results, with better
internal stability.

Keywords: Aerial-ground Integration, Feature Matching, 3D Reconstruction, Multi-View
Stereo, Structure-from-Motion

1. Introduction1

Penta-view aerial oblique images (Lemmens, 2014) have become a major source of data for2

city-scale urban reconstruction. However, occlusion and viewpoint differences greatly perturb3

the bottom parts of buildings, leading to holes in geometry and texture-blurring effects (Wu4

∗Corresponding Author: han.hu@swjtu.edu.cn

Preprint submitted to ISPRS Journal of Photogrammetry and Remote Sensing May 27, 2020



(a) Centre (b) Zeche (c) SWJTU-LIB (d) SWJTU-BLD (e) SWJTU-RES

Figure 1: Aerial-ground reconstruction for the ISPRS benchmark (Nex et al., 2015) and three buildings of the
Southwest Jiaotong University (SWJTU), Chengdu, China. The top row depicts the different structures of aerial
image collections and the bottom row shows the reconstructed aerial and ground images. The images are rendered
using Colmap (Schönberger and Frahm, 2016).

et al., 2018). Recent studies (Nex et al., 2015; Wu et al., 2018; Gao et al., 2018) have con-5

firmed that integration of aerial and ground images is a promising approach toward improved6

3D reconstruction (see Figure 1).7

The major obstacle to aerial-ground integration is the large viewpoint difference between the8

two sets of images. It is difficult to find enough tie-points to register both datasets into the same9

coordinate frame in a combined bundle adjustment. Scale invariant feature transform (SIFT)10

and SIFT-like features (Lowe, 2004; Arandjelović and Zisserman, 2012; Bursuc et al., 2015) are11

incapable of handling large perspective differences (Mikolajczyk et al., 2005), and learned features12

(Mishchuk et al., 2017; Revaud et al., 2019; Dusmanu et al., 2019) cannot greatly extend the13

classical approach (Arandjelović and Zisserman, 2012; Schonberger et al., 2017). Although some14

researchers have pioneered investigations in this area (Wu et al., 2018; Gao et al., 2018), we argue15

that some key problems remain unfulfilled.16

1) Quadratically increased image rectifications. Warping all of the images to ground (Hu17

et al., 2015) is a valid solution for the nadir and oblique views of aerial images, and the feature18

extraction has an O(n) complexity with respect to the number of images. However, the ground19

structure is not applicable in aerial-ground integration. Pairwise rectification is used to remedy20

this problem (Wu et al., 2018), by the adoption of virtual façades. But pairwise rectification21

leads to a feature extraction of O(n2), which is prohibitively high in practice. Furthermore, such22

façade structures may be untenable in certain scenarios.23

2) Problem of pairwise rectification. Even if the aerial and ground images are rectified success-24

fully, feature matching between them still remains a non-trivial task. For pairwise rectification,25

contents from only two images are involved, which will lead to some problems in feature match-26

ing. For instance, the overlapping region may be only a small part of the whole image, and this27

region may still be affected by occlusion, as seen in the work by Wu et al. (2018).28

3) Mode of the data acquisition. An effective strategy to avoid the problem of aerial-ground29

feature matching is to systematically design the image acquisition for both datasets (Molina et al.,30

2017). For instance, collecting images with acceptable convergent angles around the objects of31

interest is tenable for certain objects, such as the Centre and Zeche datasets (Nex et al., 2015)32

in Figure 1. However, in practice, flights with regular strips are preferred even for regional33
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applications, such as the campus of SWJTU in Figure 1. Terrestrial images are only captured to34

improve the quality of objects of interest. Therefore, the perspective deformation between aerial35

and ground images is inevitable.36

In this paper, we leverage the photogrammetric meshes obtained from aerial images to solve37

the above problems. Accordingly, instead of rectifying the images pairwisely, we directly render38

the textured meshes onto a virtual camera determined by the ground images. The rendered39

images also consist of depth values and normal vectors, and act as proxies between the ground40

and aerial images. Feature matches are conducted between the ground and rendered images.41

The correspondences are then enriched with depth and normal information, which can formulate42

3D patches in the object space. The 3D patches are then propagated to the aerial images via43

multi-photo geometrically constrained (MPGC) matching (Zhang, 2005) or patch-based match-44

ing (Furukawa and Ponce, 2009). A single rendered image contains textural information from45

multiple aerial images, which are typically selected meticulously in the multi-view stereo (MVS)46

pipeline (Vu et al., 2011; Waechter et al., 2014); therefore, the proposed methods are explicitly47

occlusion-aware. Additional features are detected only from the rendered images and descriptor48

matchings are conducted only on the pairs of rendered and ground images; therefore, both fea-49

ture extraction and feature matching have time complexity of O(n), with respect to the number50

of ground images. To handle the illumination differences that lead to degraded descriptor per-51

formances, we add an additional filter prior to random sample consensus (RANSAC) (Moisan52

et al., 2012) using geometry constraints.53

In summary, our main contribution is a simple, fast, accurate and robust approach that solves54

the problem of aerial-ground feature point matching by rendering the textured mesh models.55

The reminder of this paper is organized as follows. In Section 2 we briefly describe feature56

point matching between aerial and ground images. In Section 3 we elaborate on the two steps57

of the proposed methods, i.e. rendering and matching. Experimental evaluations for both the58

ISPRS datasets (Nex et al., 2015) and SWJTU datasets are demonstrated (Figure 1) in Section59

4. Finally, concluding remarks are given.60

2. Related works61

Here, we review only directly relevant studies on feature point matching methods in the62

context of large perspective differences. Specifically, three major strategies for image matching63

are considered, namely: 1) affine invariant features; 2) image rectification; and 3) 3D rendering.64

More detailed reviews and comparisons can be found in recent benchmark works (Schonberger65

et al., 2017).66

1) Affine invariant features. Following the route of scale and rotation invariant SIFT features67

(Lowe, 2004), earlier researchers sought affine invariant regions to alleviate perspective deforma-68

tions. Affine invariant features are generally represented as ellipses on the image (Mikolajczyk69

and Schmid, 2004; Matas et al., 2004; Ma et al., 2015). These affine invariant regions may also be70

detected by line structures (Chen and Shao, 2013). However, in practice, affine invariant detec-71

tors are more sensitive to image noise and their repeatability is inferior to that of the difference72

of Gaussian (DoG) detectors (Lowe, 2004) or other corner detectors (Rublee et al., 2011; Rosten73

et al., 2010). Therefore, the overall performances of affine invariant detectors are generally worse74

than those based on SIFT-like features (Lowe, 2004).75

2) Image rectification. When no a priori geometry information is available, affine SIFT (ASIFT)76

(Morel and Yu, 2009) can be used to create a database of descriptors by synthesizing the image in77

a series of pre-defined affine transformations. A similar approach is used in the database BRIEF78
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(Calonder et al., 2012), which retrieves BRIEF features on multiple scales and orientations. Roth79

et al. (2017) also synthesized a series of views using pairwise perspective transformation and the80

features are detected using similar sampling strategies as ASIFT (Morel and Yu, 2009). However,81

ASIFT will significantly increase the number of features and therefore increase the search space,82

leading to longer runtimes and lower recall rate.83

In most of standard photogrammetric applications, we have access to the initial image poses,84

from either the global navigation satellite system (GNSS) or from coarse registrations (Wu et al.,85

2018; Gao et al., 2018). The a priori geometry information can help us to rectify the images.86

For aerial oblique images obtained with regular flight strips, we can identify a view-independent87

structure for the rectification, i.e. the ground. For view-independent rectification, the base plane88

for all the images is the same and the perspective deformation between the nadir and oblique89

views can be alleviated by projecting all the images onto the base plane (Hu et al., 2015). This90

strategy is also applicable to unmanned aerial vehicle (UAV) images (Jiang and Jiang, 2017) or91

panoramas captured by mobile mapping systems (Jende et al., 2018; Javanmardi et al., 2017).92

View-independent rectifications (Hu et al., 2015; Jiang and Jiang, 2017) are convenient, as93

feature extractions and matchings have the same time complexity O(n), with respect to the94

original number of images. However, it is not always possible to find a suitable base plane that95

all the images can be projected to. Therefore, view-dependent rectifications (Wu et al., 2018; Gao96

et al., 2018) have been proposed to remedy this problem, for which the surface for rectification97

is determined pair-wisely rather than unified for all the images. Wu et al. (2018) found virtual98

façade structures by fitting planes from the points inside the frustum of camera, and rectified99

images by projecting both the aerial and ground images onto the façade planes. The façade100

structures are also used by Fanta-Jende et al. (2019) for the co-registration of mobile mapping101

images and aerial oblique images. In addition, 3D structures can also be considered for pairwise102

rectification. Gao et al. (2018) projected ground images onto aerial views, using the triangular103

meshes as proxies. A similar strategy was also implemented using dense point clouds (Shan et al.,104

2014), by formulating a depth map corresponding to the ground image and warping the image105

to aerial view in a pixelwise fashion.106

However, view-dependent rectification also implies that the descriptor must be extracted on107

the rectified images (which has quadratic time complexity), and also requires computation of108

the pairwise image rectifications. Such an onerous process is acceptable only for correlation-109

based feature matching in local windows rather than the whole image. For instance, previous110

works have rectified local patches to refine the positions of known tie-points or expand them111

to neighboring regions, such as e.g. multi-photo geometrically constrained (MPGC) correlation112

(Zhang, 2005) and patch-based multi-view stereo (PMVS) (Furukawa and Ponce, 2009; Wu et al.,113

2018).114

3) 3D rendering. The above matching methods only use data from a pair of images, regardless of115

the methods used for image rectification. In the case of aerial-ground integration, the overlapping116

region of two images may be quite narrow, limiting the recall rate of the descriptor searching.117

As an alternative, rendering 3D data onto the target view can explicitly utilize information118

from multiple images and also exploit the massively parallel graphics computing unit (GPU) for119

efficient implementation. In this context, Untzelmann et al. (2013) rendered the sparse point120

clouds from SIFT matches using the splat representation (Sibbing et al., 2013; Gao et al., 2018).121

However, the sparse point clouds from SFM are not ideal sources for such rendering.122

Recent solutions (Acute3D, 2019; Agisoft, 2019; Schönberger et al., 2016) can generate high123

resolution textured mesh models, which can be used as better proxies for the feature matching.124

And learned MVS approaches (Yu and Gao, 2020; Yao et al., 2019) have demonstrated impressive125

performances on benchmark tests, which are promising alternatives for off-the-shelf MVS solu-126
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tions. Except for rendered color images, this paper shows that depth and normal information of127

the meshes can also be preserved during rendering, which further supports the correlation-based128

local refinement of matches (Zhang, 2005; Furukawa and Ponce, 2009).129

3. Aerial-ground feature point matching by leveraging photogrammetric models130

3.1. Overview of the approach131

Integrated reconstruction from both aerial and ground images relies on the premise that132

the intrinsic and extrinsic orientation parameters are consistent in the same coordinate frame,133

which is achieved by a combined bundle adjustment. The foundation of a successful bundle134

adjustment is accurate and robust matching of tie-points, which faces the problem of large135

perspective deformation between aerial and ground images. In previous works (Wu et al., 2018;136

Gao et al., 2018), pairwise image rectifications have partially alleviated this problem, for the137

estimation of rigid transformations. However, due to the amount and quality of inter-platform138

tiepoints, previous works need ad hoc strategies in the SFM and MVS pipeline. For instance, Gao139

et al. (2018) degraded SFM to a rigid transformation and simplified the MVS as fusion of point140

clouds from different platforms. Wu et al. (2018) co-registered images from different platforms141

by weighted bundle adjustment with parameters regularized by the rigid transformation and also142

only fused point clouds without a full MVS pipeline. In fact, the key problem still remained to143

be fulfilled, i.e. finding enough inter-platform tiepoints for both the SFM and MVS pipelines.144

In this paper we surmount the problem of view-dependent rectification using textured meshes.145

We render textured meshes to ground images, and use these rendered images as delegates to146

establish feature matching between aerial and ground images. Figure 2 demonstrates the overall147

workflow of the proposed methods. Beginning with two separate datasets, we first reconstruct the148

sparse models via existing SFM pipeline. Coarse registration is conducted to fuse both aerial and149

ground models into the same coordinate frame, similar to previous works (Wu et al., 2018; Gao150

et al., 2018); the coarse registration can be achieved by either weak GNSS information or three151

interactively selected points. As our approach requires no planar structures (Wu et al., 2018),152

dense reconstruction using existing MVS pipeline is only required for the aerial datasets, from153

which tile-wise models are obtained. The textured meshes are rendered using the camera defined154

by the ground images; the results consist of color, depth and normal vectors. The synthesized155

color images are matched with the ground images, and correspondences are then propagated156

to the aerial views using the depth information. Due to insufficient geometric accuracy of the157

meshes and blending problems of the texture (Waechter et al., 2014) in the MVS pipeline, the158

correspondences have to be refined on the original aerial images. The refinement is achieved159

through the 3D local patches determined by the depth and normal vectors of the synthesized160

images. Finally, the matches are directly injected into off-the-shelf SFM and MVS pipelines for161

integrated reconstruction.162

3.2. View synthesizing the ground images by rendering of meshes163

3.2.1. Definition of the camera models164

To exploit OpenGL graphics pipeline for the synthesis of ground images from textural in-165

formation of aerial meshes, the notations of intrinsic and extrinsic orientation parameters from166

SFM and camera matrices of graphics pipeline must be converted.167

Specifically, for camera model, we use the protocol of BlockExchange (Bentley, 2019), in168

which a 3D point X is projected to image x as,169

x = fD(Π(R(X −C))) + x0, (1)
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Figure 2: Workflow of the proposed method.

where f and x0 are the principal distance and principal point measured in pixels, respectively;170

D(·) is the distortion mapping from an undistorted focal plane coordinate to the distorted position171

and the Brown model with five parameters (k1, k2, k3, p1, p2) is considered; Π(·) : R3 7→ R2 is172

the projection function mapping the 3D point in camera space to the homogeneous normalized173

coordinate; and R and C denote the extrinsic orientation for the rotation matrix and projection174

center, respectively. In addition, each image is enriched by three depth values recorded in the175

BlockExchange format, in terms of the nearest zn, furthest zf and median zm depth; even without176

these values, it is trivial to estimate the depth information from the sparse point clouds or the177

bounding box of the region of interest.178

3.2.2. Estimation of the rendering matrices for the view synthesis179

In the graphics pipeline, the homogeneous coordinate X̃ ∈ R4 of the 3D point X is projected180

to the normalized screen space m ∈ R3 (and the homogeneous coordinate m̃ ∈ R4) using view181

V ∈ R4×4 and projection P ∈ R4×4 matrices as below:182

m̃ = PVX̃, (2)

where the view matrix V is defined with three parameters, i.e. eye E, center O and up U183

vectors. The matrix is generally implemented in the lookat routine (GLM, 2019), which describes184

the position and orientation of the camera. The projection matrix P is defined by the perspective185

routine (GLM, 2019) using the field of view θ, aspect ratio ρ, nearest zn and furthest zf depth186

values, which describes the frustum of the camera. Although it is possible to consider the187

principal point offsets and distortion of the camera in the graphics pipeline by exploiting the188

program shaders, we ignore them for two reasons: (1) the influences of them on perspective189

deformation are almost negligible and (2) they only influence the intermediate coordinates on190

the synthesized images, which will be eventually propagated to aerial views and refined.191

To obtain the eye E, center O and up U vectors for the lookat function, the conversion is192

determined intuitively as:193

E = C

O = C + zmRTez

U = −RTey

, (3)

where e denotes the unit vector along the corresponding axis and RT transforms the axis in194

camera coordinate space to object coordinate space. With respect to the parameters in the195
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perspective function, zn and zf are directly used for the depth range and the other two parameters196

are calculated as:197

θ = 2 arctan
h

2f

ρ =
w

h

, (4)

where w and h are the width and height of the images, respectively.198

3.2.3. Rendering of the color, depth and normal images199

Aerial images

Ground  images Ground SFM

Aerial meshes

SFM

Coarse  registeration

SFM

MVS

Color Map Depth Map

XYZ MapNormal Map

Figure 3: Illustration of the rendering of the meshes to various maps, comprising color images, depth images and
normal images. The coordinates of each pixel in the rendered image can be obtained as the XYZ map.

Another practical issue for the rendering of the textured meshes is that the meshes are tiled on200

a tree structure, e.g. quad-tree, octree or adaptive KD-tree. Even inside a single tile, the models201

are still segmented into small pieces with different level-of-details to accelerate the loading of202

files from disks. The render engine should use a scene graph to organize the dynamic loading (or203

unloading) of the meshes that are inside (or outside, respectively) the frustum of current view.204

This is non-trivial in implementation, but fortunately, OpenSceneGraph (Osfield and Burns,205

2014) has already implemented an optimized database manager with its native data format. For206

each frame, we wait for the database manager to fully load the load the finest level of detail of207

model in the current view, before actually rendering the models. For the rendering, we allocate208

three frame-buffer objects to store the color, depth and normal information (Figure 3), and the209

meshes are then directly rendered to the buffers rather than to the physical screen. The sizes of210

the frame-buffer objects are the same as those of the corresponding cameras, therefore reducing211

the differences of scale and other geometric factors.212

Notably, the rendering of the meshes explicitly utilizes the massively parallel GPU and can213

be achieved almost in real time. In addition, any point in the color image is one-on-one mapped214

to the 3D object space with the depth map (XYZ map in Figure 3). Therefore, by enriching215

a point with a normal vector, we can obtain a locally oriented 3D patch; this is similar to the216

concept of previous work (Furukawa and Ponce, 2009). The patch is helpful for the refinement217

of correspondences between aerial and ground images.218

3.3. Feature matching and refinement with the synthesized images219

Figure 4 illustrates the two steps of the aerial-ground feature-point matching. For coarse220

matching, we first extract SIFT features (Lowe, 2004) on the synthesized images, because SIFT is221
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Figure 4: Overview of aerial-ground feature matching. The circles in the coarse-matching images denote the three
patches in the refined matching.
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still the default option in many solutions (Wu et al., 2011; Schönberger and Frahm, 2016). Then,222

we compare descriptors between the ground and synthesized images, using the ratio check and223

filter outliers, using both the proposed geometrical constraints (Subsection 3.3.1) and RANSAC224

(Fischler and Bolles, 1981). Specifically, we use a recent variant of RANSAC, the a contrario225

RANSAC (AC-RANSAC), which features automatic threshold tuning (Moisan et al., 2012). If226

the remaining number of pairwise matches between the synthesized and ground images is less227

than five, we consider the matching to be not stable and ignore the results for this pair.228

3D patches are formulated using the depth and normal information from matches on the229

synthesized images. The coordinate X in 3D space is calculated from the corresponding depth230

value using the reverse of Equation 2. The ground sample distance δ = d
f is also estimated231

from the depth value d. We assign a relatively large search window wsδ in the object space as232

delegates, which is centered on and tangential to the oriented points (X,n). In the following233

section, we use the term p = (X,n, wsδ) to denote the oriented patches in the object space,234

inspired by previous work (Furukawa and Ponce, 2009). Suitable views of the aerial images are235

selected (Subsection 3.3.2) for each local patch and then the patch is projected to aerial views236

for subsequent refinement.237

For refined matching (Subsection 3.3.3), a template Ig on the ground images is extracted, the238

size of which is determined by a correlation window wc. Then, correspondence image subsets of239

aerial views Ia are also extracted and rectified, using the 3D patch and selected aerial views. The240

rectified patches are matched against the template Ig using normalized correlation coefficient241

(NCC) and least-squares matching (Gruen, 1985; Hu et al., 2016) to refine the aerial-ground242

matches.243

3.3.1. Local geometry constraints for ground-synthesized matching244

Due to illumination differences between synthesized and ground images, the SIFT match245

may contain significantly more outliers after ratio checking, which leads to inferior RANSAC246

performance. However, because the geometrical differences between the ground and synthesized247

images are almost negligible, the disparities of correct matches should be small and follow con-248

sistent patterns in local regions. Based on these insights, we propose a greedy search algorithm249

to remove outliers prior to RANSAC. Specifically, from a pair of matched points p(xp, yp) and250

q(xq, yq), a directed vector can be obtained as m = p − q, which denotes the disparity of the251

match. If the initial coarse registration is correct, m = 0 should be satisfied. However, due to252

alignment errors and uncompensated distortion, the disparities m is not exactly zero. But the253

disparities should at least be consistent with the following three constraints (Figure 5), which254

are used sequentially to filter outliers.255

2p

3q

3p

2q

1q

1p

(a) Length constraint

1p

2p3p

1q

3q

2q

(b) Intersection constraint

2p

3p

3q

1p

1q

2q

Dominant 
direction

(c) Direction constraint

Figure 5: Constraints for outlier filtering in the matching of ground and synthesized images. The points p and q
denote the key points in the synthesized and ground images, respectively. Note that p is placed on the ground
image. The red lines indicate matches that violate the constraints.
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1) Length constraint. The length of the disparity vector |m| is constrained by an upper limit256

τl, i.e. |m| < τl. In practice, τl is chosen as 2% of the image extent.257

2) Intersection constraint. First, we sort the matches by the lengths of |m| ascendingly. Then,258

we determine if each segment has an intersection with the K-nearest (K = 5) segments. The259

segments are indexed using KD-tree. If an intersection exists, the longest segment is marked as260

outlier.261

3) Direction constraint. First, we calculate the dominant direction for each segment with262

respect to the K-nearest (K = 5) segments. Then, we remove segments that deviate from the263

dominant direction by an angle τa (τa = 90◦ is used), similar to the motion consistency in the264

work by Jiang and Jiang (2018).265

3.3.2. Propagation of the matches to the aerial images266

As the meshes are produced from aerial images, the local patches p should be consistent with267

all of the aerial images. In theory, directly projecting the 3D point X of the patch p to suitable268

aerial views will obtain correspondences between ground and aerial images. In this paper, three269

criteria are considered during the selection of suitable aerial views, as described below.270

(1) Containment, the local patch should locate inside the frustum of the aerial images. This271

criterion is tested by projecting the four corners of the patch defined by the search window wsδ272

onto all the aerial images.273

(2) Consistency, the orientation of the patch n and the direction of aerial image RTez should274

be consistent, i.e. less than a threshold τn = 90◦. This criterion is used because the subset of275

the aerial images will be rectified locally for the subsequent refinement; if the normal vector of276

the patch is inconsistent with the aerial view, the rectified image will be blurred due to large277

perspective deformation.278

(3) Visibility, the patch should not be occluded by the mesh itself. For occlusion detection, the279

optimized bounding volume hierarchy (BVH) of the triangular meshes implemented in Embree280

(Wald et al., 2014) is used for ray tracing. As BVH structures have almost linear space complexity281

with regard to the number of triangles, we cache the BVH structure in advance using the meshes282

that have the finest level of detail. We use OpenSceneGraph (Osfield and Burns, 2014) to load283

the triangular meshes, which are segmented into small fragments. Then, Geogram (Lévy, 2015)284

is used to automatically clean the fragmented meshes, including welding close vertices and fixing285

miscellaneous topological defects.286

3.3.3. Matching refinement between aerial and ground images287

Although the meshes used for rendering are obtained from aerial images, the matches prop-288

agated to the aerial images may be inaccurate. The geometry of meshes is noise-laden and the289

textural information is blended and blurred, as shown in Figure 6. Therefore, the coordinates290

of the synthesized images and the corresponding depth value can not be used directly in the291

combined bundle adjustment. We add an additional step to solve this problem: propagating292

the matches to aerial images and directly matching the local patches between ground and aerial293

images. In this way, the matches on the original images will finally be used in the bundle294

adjustment.295

Inspired by the MPGC approach (Zhang, 2005) and our previous view-independent synthesis296

(Hu et al., 2015), we also project all of the patches to the same plane using the homographic297

transformation H (Hartley and Zisserman, 2003):298

H = Kg(R + tnT
d )K−1

a , (5)

where K is the camera matrix; R and t are the relative orientation and translation parameters299

between the two images, which are deducted from the orientation parameters after coarse regis-300
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Figure 6: Aspects of the synthesized images that will cause non-negligible errors for aerial-ground matches.

tration; nd = n
d is the scaled normal vector of the patch, with n the normal vector of the patch301

and d the distance between patch and aerial view; and the subscripts g and a denote the ground302

and aerial images, respectively. Notably, only the local patches surrounding the initial position303

are loaded and transformed, rather than the entire images as our previous work (Hu et al., 2015).304

After rectifying all of the patches, a classic NCC search is used to find the initial match,305

followed by LSM to further improve the location. The patch extracted from the ground image306

serves as the template for matching and all of the aerial images are aligned pairwisely. Any match307

with a correlation smaller than a threshold τc (τc = 0.75 is used) is pruned before LSM. After308

LSM, reverse homographic transformation in Equation 2 is used to obtain the final coordinates309

on the aerial images.310

4. Experimental evaluations311

4.1. Dataset descriptions312

Five datasets (see Table 1 and Figure 1) are used to evaluate the proposed methods, which313

comprise the ISPRS benchmark dataset collected at Centre of Dortmund and Zeche of Zurich314

(Nex et al., 2015) and three datasets collected at the campus of SWJTU. The ground sample315

distances (GSD) of the images range from 0.2 to 2.5 cm. Qualitative and quantitative feature316
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point matching experiments are conducted and compared with existing commercial solutions317

(Acute3D, 2019; Agisoft, 2019) and one of the most recent algorithm (Revaud et al., 2019). In318

addition, to further verify the capability of proposed method, 3D reconstruction results are also319

presented and compared.320

Table 1: Detailed descriptions of the five datasets used for evaluations.

Dataset
Sensor GSD (cm) #Images

Aerial Ground Aerial Ground Aerial Ground

Centre SONY Nex-7 SONY Nex-7 1.10 0.53 146 204
Zeche SONY Nex-7 SONY Nex-7 0.56 0.28 172 147

SWJTU-LIB SONY ICLE-5100 Cannon EOS M6 1.69 1.06 123 78
SWJTU-BLD SONY ICLE-5100 Cannon EOS M6 1.93 1.33 207 88
SWJTU-RES SONY ICLE-5100 DJI spark 1.97 2.56 92 192

The Centre and Zeche datasets are collected by ISPRS in Dortmund and Zurich, respectively.321

Both the aerial and ground images surrounding a typical building are captured using the same322

sensor. The other three datasets were all collected in the campus of SWJTU, specifically at the323

library (SWJTU-LIB), a general building (SWJTU-BLD) and residential areas (SWJTU-RES).324

Unlike the ISPRS datasets, the aerial images of SWJTU datasets were collected in flights of325

regular strips and the ground images were captured only for areas of interest. It should be noted326

that the ground images of SWJTU-RES were not essentially obtained on the ground, which were327

also captured by a low-cost UAV in a vertical uplift flight. However, because they share similar328

characteristic of other ground images, we also deem them as ground in this study.329

SFM results of both the aerial and ground images are obtained prior to the processing pro-330

posed in this paper. In addition, we assume that both image sets are registered roughly; the331

coarse registration is conducted through either the weak GNSS data obtained in the EXIF header332

of the images (for Center and Zeche) or three interactively selected tie-points when GNSS data333

are not available (for the three SWJTU datasets).334

4.2. Evaluation of feature matching335

4.2.1. Evaluation of feature matching between ground and synthesized images336

Because the synthesized images are obtained using the orientation parameters after coarse337

registration, the appearances between ground and synthesized images should be similar. In338

addition, the disparities of the feature matches, i.e. the difference of image coordinates, should339

be small. This is confirmed in Figure 7, in which the cyan arrows indicate the disparities drawn340

on the ground images. In fact, the lengths of the disparities can also reflect the accuracies of341

coarse registration. Another expected characteristic of the distribution of disparities is that they342

are consistent in local regions, as shown in the enlarged subsets on the right of each subfigure.343

This is, in fact, the rationale behind the proposed geometric constraints.344
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Disparity of the matches

Enlarged region

(a) (b)

(c) (d)

(e)

Figure 7: Disparities of the matches between ground and synthesized images drawn on the ground images. (a) to
(e) represent results for Centre, Zeche, SWJTU-LIB, SWJTU-BLD and SWJTU-RES, respectively. The arrows
are pointing from the coordinates of ground images to those of the synthesized images. Enlarged views indicated
by the rectangles are shown on the right part of each subfigure.

Matches retrieved only with geometric constraints

Matches retrieved only without geometric constraints

Matches retrieved with both approaches

(a) (b)

(c) (d)

(e)

Figure 8: Comparisons of the matches between ground and synthesized images with and without the geometric
constraints. (a) to (e) represent results for Centre, Zeche, SWJTU-LIB, SWJTU-BLD and SWJTU-RES, respec-
tively. After ratio checks, the putative matches are categorized into three types: 1) green lines represent matches
retrieved only with the geometric constraints; 2) red lines represent matches retrieved only without the geometric
constraints; and 3) blue lines represent matches retrieved with both approaches.

To evaluate the performances of the proposed geometric constraints in the matching of synthe-345

sized and ground images, we compare feature matches with and without the proposed geometric346
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constraints. Figure 8 shows the matching results for the five datasets. With geometric con-347

straints, the outlier filtering is more stable; we have succeeded in retrieving correct models for all348

the five datasets, while the SWJTU-BLD is failed without geometric constraint as also demon-349

strated in Table 2. Notably, even for datasets succeeded without geometric constraints, more350

outliers are visible, such as Figure 8a and e.351

Table 2: Comparisons of the outlier filter with and without the proposed geometric constraints in the matching
between ground and synthesized images. The values for SIFT are putative matches after ratio checks. The values
for the fourth and fifth columns are correct matches after outlier filter.

Dataset Image #SIFT #Without Constraint #With Constraint

Centre DSC02820 1863 180 152
Zeche DSC04664 2685 530 525
SWJTU-LIB DSC01726 2152 385 316
SWJTU-BLD IMG1919 2111 0 84
SWJTU-RES DJI0137 2098 266 263

4.2.2. Evaluation of feature-matching between aerial and ground images352

(a) Centre (b) Zeche (c) SWJTU-LIB (d) SWJTU-BLD (e) SWJTU-RES

Figure 9: The selected 10 image pairs from the five test datasets. The odd and even rows show images from aerial
and ground sets, respectively.

We compare the feature matching results against both SFM pipelines and ad hoc features.353

Five solutions are considered, including the proposed approach, one commercial solution, i.e.354

Agisoft MetaShape (Agisoft, 2019), two freeware solutions, i.e. VisualSFM (Wu et al., 2011)355

and Colmap (Schönberger and Frahm, 2016; Schönberger et al., 2016) and a recent feature based356

on deep learning, i.e. R2D2 (Revaud et al., 2019). Ten pairs are selected from the five datasets,357

with two pairs for each dataset (Figure 9). We prefer pairs with large convergent angles as358
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long as the selected pairs have enough overlaps. As it is possible that the matching results are359

noise-laden, we manually count the number of correct matches for the ten pairs; the correctness360

is validated only roughly, such as the same tile of the wall.361

Table 3 summarizes the results. Notably, the other four solutions often fail in these situations.362

Thus, although these solutions are quite robust for processing normal scenes or even Internet-363

scale datasets (Schönberger and Frahm, 2016; Wu et al., 2011), the large perspective deformation364

between aerial and ground images are still not solved by them. On the contrary, the proposed365

methods succeeds in all the cases, with convergent angle up to 75◦366

Table 3: Comparisons of the numbers of matches for 10 pairs of images between aerial and ground datasets, in
which two pairs are selected for each dataset. The convergent angles for the image pairs are shown in the second
row.

Dataset Centre Zeche SWJTU-LIB SWJTU-BLD SWJTU-RES
Angle (◦) 50.8 61.9 40.9 51.5 54.6 61.2 59.6 70.2 34.6 75.1

Proposed 243 114 188 304 91 161 24 5 72 94
VisualSFM 0 12 0 0 12 0 0 0 6 0
MetaShape 0 0 0 0 0 0 0 0 0 0

Colmap 0 17 0 0 29 0 0 0 0 0
R2D2 17 15 0 0 0 0 0 0 0 0

We also select one pair from each dataset and compare the matching results visually against367

the results afforded by the second-best processing system, VisualSFM, in Figures 10 through368

14. During these comparisons, the pair with larger convergent angle in Table 3 is chosen. The369

proposed methods succeeds in obtaining a certain amount of correct matches for all the five pairs;370

and VisualSFM only manages to obtain some correct matches for the Centre dataset only, with371

noticeably higher outlier ratio.372

We also highlight some interesting and appealing characteristics of the proposed methods in373

the enlarged regions. 1) Repeated pattern, the walls of Centre, Zeche and SWJTU-LIB all demon-374

strate clear repeated patterns and the proposed approach achieves satisfactory performances in375

this scenario. 2) Perspective deformation, the proposed method is agnostic to perspective de-376

formation as seen in the deformed wall tiles of Centre and SWJTU-LIB; this is because the377

descriptor searching is only conducted between the ground and synthesized images and tem-378

plate matching and least-squares matching are conducted after rectification guided by the local379

patch. 3) Different deformation models, pairwise rectification based on a common plane (Wu380

et al., 2018; Gao et al., 2018) can only alleviate perspective deformation on a single plane, but381

the proposed method can obtain matches on both the ground and façades at the same time,382

as seen in Centre, Zeche and SWJTU-RES. 4) Glassy objects, it is arguably that glassy objects383

are the most challenging cases for image matching, which also causes problem for the proposed384

approaches; however, we still obtain several correct matches for the SWJTU-BLD dataset; in385

fact, tens of matches are obtained between ground and synthesized images and five remains after386

propagating to the aerial view.387
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(a) VisualSFM (b) Proposed (c) Enlarged

Figure 10: Aerial-ground matching results for the DSC02820-DSC07379 pair from the Dortmund dataset. The
red rectangles denote the enlarged areas. The convergent angle between the two images is 61.9◦.

(a) VisualSFM (b) Proposed (c) Enlarged

Figure 11: Aerial-ground matching results for the DSC04664-DSC06239 pair from the Zeche dataset. The red
rectangles denote the enlarged areas. The convergent angle between the two images is 51.5◦ and the enlarged
view for the ground image is rotated 90◦ clock-wisely for better visualization.
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(a) VisualSFM (b) Proposed (c) Enlarged

Figure 12: Aerial-ground matching results for the IMG1726-W0762 pair from the SWJTU-LIB dataset. The red
rectangles denote the enlarged areas. The convergent angle between the two images is 61.2◦.

(a) VisualSFM (b) Proposed (c) Enlarged

Figure 13: Aerial-ground matching results for the IMG1919-X0650 pair from the SWJTU-BLD dataset. The red
rectangles denote the enlarged areas. The convergent angle between the two images is 70.2◦

.
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(a) VisualSFM (b) Proposed (c) Enlarged

Figure 14: Aerial-ground matching results for the DJI0312-D0605 pair of the SWJTU-RES dataset. The red
rectangles denote the enlarged areas. The convergent angle between the two images is 75.1◦ and the enlarged
view for the aerial image is rotated 90◦ clock-wisely for better visualization.

4.2.3. Evaluation of efficiencies of the feature matching388

The time complexity of the feature matching strategy to connect aerial and ground sets of389

images is O(n), with respect to the number of ground images. On the contrary, simply enumer-390

ating all the pairs has time complexity of O(n2). Considering the large appearant differences391

between aerial and ground images, the image retrieval technique that achieves time complexity392

of O(Kn) may not be quite helpful, in which K is a constant for the most similar K images.393

However, the runtime of a single pair is absolutely longer due to the additional steps involved.394

Therefore, we separate the feature matching for a single ground image into three stages: 1)395

rendering, which consists of loading the mesh models and retrieving all the synthesized images; 2)396

pairwise matching, which consists of detecting features, descriptor searching and outlier removal397

and this is a common step involved in almost all feature matching methods; and 3) propagation,398

which collects visible aerial views, loads the local patches from disks and refines the matches.399

As shown in Table 4, the costs of additional stages, e.g. rendering and propagation, are always400

on par with pairwise matching. The ratios between additional steps and pairwise matching are401

in the range of (1,2), which indicates that the proposed approach has a linear time complexity,402

with respect to the number of ground images.403

Table 4: Comparisons of different stages of the proposed matching strategy for a ground image. The number of
matches are also recorded in the second row and the runtime of last stage is dependent on this number.

Dataset Centre Zeche SWJTU-LIB SWJTU-BLD SWJTU-RES

#Matches 277 152 349 525 352 316 74 61 151 263

Rendering (s) 2.8 8.5 2.9 3.3 6.3 5.2 2.2 5.8 1.1 0.7
Pairwise Match (s) 4.0 5.6 2.5 4.2 6.2 5.7 4.2 5.9 3.6 2.7
Propagation (s) 1.5 3.6 5.0 8.8 11.5 4.1 1.7 0.9 1.3 1.5
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4.3. Evaluations of the integrated reconstruction404

We develop an add-on solution for integrated reconstruction, based on ContextCapture405

(Acute3D, 2019). In addition, we also compare three other solutions: the vanilla ContextCapture406

(Acute3D, 2019), MetaShape (Agisoft, 2019) and Colmap (Schönberger and Frahm, 2016). Both407

sparse and dense reconstructions are evaluated in the following subsections.408

4.3.1. Evaluation of integrated sparse reconstruction409

First, we demonstrate the SFM results by comparing the final numbers of reconstructed410

images. As some solutions can automatically separate the images into several clusters, only the411

largest cluster is considered. In addition, we report the number of tie-points that connect aerial412

and ground images, as these points are the most crucial for the integrated reconstruction. In our413

experiments, without interactively selected tie-points, most other solutions will not converge to414

a reasonable results in the SFM procedure. To make a fair comparison, we take about an hour415

of labor work to add user-input tie-points in the solutions of ContextCapture and MetaShape,416

for each dataset.417

Table 5 shows the SFM performances, and it can be seen that the proposed add-on solution418

for ContextCapture succeeds in all the cases, while the vanilla ContextCapture fails in most of419

them even with interactively selected tie-points. With user-input tie-points, MetaShape manages420

to register four out of the five datasets, but the number of tie-points connecting images between421

aerial and ground sets are fewer than the proposed methods. It is also interesting to see that422

Colmap succeeds in two datasets even without human interventions using SIFT features; this is423

probably due to the reliable incremental SFM pipeline (Schönberger and Frahm, 2016). However,424

we argue that enough tie-points are also important, considering that the proposed approach out-425

performs other solutions even with a relatively weak SFM solution bundled in ContextCapture.426

In the Zeche dataset, 31 aerial images are not reconstructed, this is because that the original427

aerial-only SFM result from ContextCapture does not contain them.428

To further evaluate the precision and accuracy of the proposed methods, the position un-429

certainties from the aerial triangulation report and the root-mean-square error (RMSE) of the430

check points are used. The former (Table 6) metric denotes the internal stability of the SFM431

results, which is estimated from the covariance matrix (Agarwal et al., 2012) of the least-squares432

solver and taken from the report of ContextCapture. The latter (Table 7) denotes performance433

against external control networks. As different datasets have different accuracies, we also report434

the results generated using only aerial images as baseline.435

For the uncertainties of image positions (Table 6), almost all the results from aerial-ground436

integrated approach are better than that of only UAV images, except for SWJTU-BLD; this437

is probably due to better convergent geometries formed by both aerial and ground images; for438

SWJTU-BLD, the reason is that the feature matching performances are less robust due to the439

glassy objects.440

For the accuracies of the check points, the results from MetaShape are also compared on the441

four datasets that MetaShape successfully registered. For each dataset, three or four control442

points are used in the bundle adjustment, and five to eight check points are used for evaluations.443

Both control and check points are manually marked at least on three images. Compared to the444

reference results using UAV images only, both the proposed solution and MetaShape achieved445

satisfactory results. The proposed solution using ContextCapture as the backend for SFM gen-446

erally has slightly better horizontal accuracies and MetaShape has better vertical accuracies.447
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Table 5: Comparisons of different solutions for the five datasets on the sparse reconstruction. The numbers of
reconstructed images proportional to the total image numbers are reported in the third and fourth columns. In
addition, the numbers of aerial-ground tie-points are presented in the fifth column.

Dataset Method
#Images

#Aerial-ground tie-points Status
Ground Aerial

Center

Proposed+ContextCapture 203/204 146/146 23648 Succeeded
ContextCapture 204/204 0/146 0 Failed
MetaShape 203/204 146/146 10428 Succeeded
Colmap 168/204 0/146 0 Failed

Zeche

Proposed+ContextCapture 172/172 116/147 38796 Succeeded
ContextCapture 172/172 116/147 817 Succeeded
MetaShape 172/172 147/147 23201 Succeeded
Colmap 172/172 147/147 3171 Succeeded

SWJTU-LIB

Proposed+ContextCapture 78/78 123/123 11399 Succeeded
ContextCapture 78/78 123/123 20 Succeeded
MetaShape 78/78 123/123 1614 Succeeded
Colmap 78/78 123/123 1374 Succeeded

SWJTU-BLD

Proposed+ContextCapture 88/88 207/207 1706 Succeeded
ContextCapture 0/88 205/207 0 Failed
MetaShape 0/88 207/207 0 Failed
Colmap 38/88 0/207 0 Failed

SWJTU-RES

Proposed+ContextCapture 192/192 88/92 779 Succeeded
ContextCapture 192/192 0/92 0 Failed
MetaShape 192/192 91/92 323 Succeeded
Colmap 0/192 16/92 0 Failed

Table 6: Evaluation of the position uncertainties for each images after bundle adjustment. The values are taken
from the report of ContextCapture. For reference, the results from only the aerial images are also demonstrated.

Dataset
UAV only (cm) Integrated (cm)

X Y Z X Y Z

Centre 0.10 0.10 0.10 0.07 0.07 0.07
Zeche 0.04 0.04 0.04 0.03 0.03 0.03
SWJTU-LIB 0.53 0.46 0.58 0.32 0.30 0.32
SWJTU-BLD 0.58 0.56 0.45 0.71 0.77 0.59
SWJTU-RES 3.59 7.89 7.26 2.65 1.06 3.33
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Table 7: Comparisons of the accuracies of check points for the integrated reconstruction. For reference, we also
report the results generated using only the aerial images as baseline. The symbol “-” indicates missed results due
to either lack of check points or failure of the SFM pipeline.

Dataset
UAV Only (cm) Proposed (cm) MetaShape (cm)

X Y Z X Y Z X Y Z

Centre - - - 2.6 2.0 2.2 8.3 5.9 4.8
Zeche 1.2 2.3 1.4 1.3 1.9 1.6 2.2 2.2 0.7
SWJTU-LIB 1.0 1.1 32.1 2.4 3.3 15.5 7.8 7.5 8.8
SWJTU-BLD 1.6 1.0 4.9 3.4 9.9 12.1 - - -
SWJTU-RES 4.7 0.9 12.7 2.7 0.7 14.5 9.7 6.6 6.5

4.3.2. Evaluation of integrated dense reconstruction448

Figure 15 compares the textured mesh models obtained using only aerial images (top row)449

and integrated solutions (bottom row). We also highlight some parts of the models on the right450

of each subfigure. Using the integrated solution, the textures on the façades are clearer, as shown451

in Figure 15a, c and d. In addition, the reconstructed models are obviously better and more452

complete, as can be seen in Figure 15c and the small objects in Figure 15d. The quality of453

texture is also improved, such as the blurred areas under the eaves in Figure 15b.454

4.4. Discussions and limitations455

Based on the above evaluations for feature matching and integrated reconstruction, we sum-456

marize some characteristics and limitations of the proposed methods.457

1) Integration with existing SFM and MVS pipeline. Although previous solutions (Wu et al.,458

2018; Gao et al., 2018) can satisfactorily incorporate aerial and ground images into the same459

framework, they break existing SFM pipeline and require ad hoc bundle adjustment approaches.460

In fact, the tie-points in the sparse reconstruction are also important for subsequent MVS461

pipeline, which are used as initial surfaces or constraints, such as the patch-based expanding462

(Furukawa and Ponce, 2009), variational refinement (Vu et al., 2011; Yu and Gao, 2020) or De-463

naulay triangulation constraints (Wu et al., 2012). Instead, the proposed method can be directly464

used as add-on to existing SFM and MVS pipelines (Acute3D, 2019).465

2) Efficiency and accuracy. The proposed pipeline is also fast and accurate. We do not466

need to enumerate all the pairs between aerial and ground images, which has quadratic time467

complexity. Instead, feature matching is only required between ground and synthesized images468

and is propagated to the aerial views, which has linear time complexity. This is important,469

because if large viewpoint differences exist, we cannot rely on descriptor-based image retrieval470

to reduce the numbers of matching pairs. In addition, an additional refinement step is adopted471

to improve the location of aerial-ground matches.472

3) Limitations. A limitation of the proposed approach is shared by previous works (Wu et al.,473

2018; Gao et al., 2018), namely that dense reconstruction is required prior to the SFM pipeline.474

Although our method also requires an additional step, i.e. texture mapping, all the above steps475

are generally bundled in an unified MVS pipeline. In addition, only regions of interest need to be476

retouched (Acute3D, 2019) and the runtime overhead may be ignored. Nonetheless, the quality477

of the textured mesh models will inevitably influence the performance of our approach.478

5. Conclusion479

In this paper, we address the problem of feature matching between aerial and ground images,480

which currently suffers from severe perspective deformation resulting from viewpoint differences.481

21



(a) Dortmund (b) Zeche

(c) SWJTU-LIB (d) SWJTU-BLD

(e) SWJTU-RES

Figure 15: Comparison of the textured mesh models generated from only aerial images (top row), and those
generated from aerial-ground images (bottom row). The right column of each subfigure is an enlargement of the
regions highlighted by the rectangles.

We elegantly solve the problem by leveraging textured mesh models, which are rendered to the482

virtual cameras of the ground images. In addition, robust geometric constraints and patch-based483

matching refinement are used to improve the robustness and quality of the matches. The pro-484

posed method is featuring four appealing characteristics: 1) simplicity, the proposed method can485

be used as add-on solution to existing SFM and MVS pipelines, which simplifies the integration;486

2) efficiency, the proposed strategy has linear time complexity rather than quadratic for pair-487

wise rectification (Wu et al., 2018; Gao et al., 2018); 3) accurate, the matches are refined locally488

between aerial and ground images; and 4) robust, the proposed approach is agnostic to the conver-489

gent angle between aerial and ground images. Future works may be devoted to further exploiting490
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the possibility of integrating light detection and ranging (LiDAR) point clouds and panoramas491

collected by the ground mobile-mapping systems into aerial datasets. Code and the SWJTU492

datasets have been made publicly available at https://vrlab.org.cn/ hanhu/projects/meshmatch.493
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